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ABSTRACT

The regenerative braking system (RBS) in electric vehicles (EVs) enhances its
capability against internal combustion engines (ICE). Antilock braking system
(ABS) is widely used in RBS because of its maneuverability and safety. Slip on
the braking process results in a difference in time to stop the wheels and the
vehicle. Timing results showed that ABS with high frequency, above 30 Hz,
tended to act like hydraulic brakes. Hydraulic brakes achieved the highest time
difference, 8 seconds at 2250 rpm. ABS 10 Hz owned the lowest time
difference, 0.1 seconds at the same rpm. Losses due to slip could be minimized
with low-frequency ABS. It converts the friction between the wheels and the
brakes into electrical energy instead of stopping the vehicle.

Keywords: Regenerative braking; electric vehicles; antilock braking system;
friction losses; braking process.

Introduction

Electric vehicles (EVs) have become an alternative to internal combustion
engines due to environmental and economic interests [1]. Barriers to EV
development are power storage and scarce battery charging bays [28]. Besides
that, it has many advantages, including high efficiency. It can recharge its
power with a regenerative braking system (RBS) and regenerative suspension
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system (RSS) [32]. These S}*stemﬂccur dynamically when the vehicle is
running on the road. Therefore, the coefficient of friction between the tire and
the road also affects this pss [10].

RBS can minimize one-third to one-half of vehicle energy lost due to
braking [4]. Generally, the braking on EVs has two types of brakes, electric
and friction [3]. They can be used in series or parallel control to get a fast
response and high stability [2]. Several studies have used nonlinear
modification models as their predictive control method to maximize braking
Bergy recovery instead of ensuring braking stability [5]. Also, the motor for
regenerave braking can be directly added to conventional braking to get
greater efficiency and better energy recovery capacity of regenerative braking
[11].

The parallel control on the RBS is similar to conventional braking,
while ll'aeries control prioritizes regenerative braking before friction braking
[19]. It refers to the distribution of friction between the front and rear axles
with the regenerative force of the motor [17]. The ideal distribution curve
becomes the reference for the distribution of these forces for braking stability
[26]. The brake-by-wire system introduced in the EV has increased the
efficiency and control resanse of the antilock braking system (ABS) [21]. It
can also help to increase the braking torque, which is generally much higher
than the torque that an electric motor can produce [20].

ABS has high safety and stability, so 1t is often used in the systems on
both conventional and electric vehicles [34]. ABS can stop transportation
quickly by setting wheel slip at the optimal value, resulting m maximum
friction. All braking systems are reliable in road conditions with an ordinary
coefficient of friction [30]. For slippery roads, the potential of the wheels being
locked is very high, so an algorithm that regulates the pressure of the brake
pistons 1s needed [22]. The ABS model-based algorithm (MBA) provides a
wide piston frequency range so the designer can adjust 1t to the road friction
coefficient [31].

Battery electric vehicle (BEV) 1s a common EV power source
encountered today because the system is simple and easy to implement [24].
However, its power management strategy (PMS) 1s riskier because the power
source 1s only from the battery [23]. Generally, BEVs contain a supercapacitor
(SC) bank to overcome that problem and imitate a DC-DC converter as a
regulator of energy discharge and recovery in RBS [29]. The size of the BEV
depends on the EV's minimum mileage and power demand [8]. The thing that
needs to be underlined 1s when the wheel rotation 1s low, the power generated
by the RBS cannot be charged to the power source because the feedback
energy 1s low [33].

This study tested the EV prototype using a DC motor as the power
source and ABS as the RBS, as shown i Figure 1. ABS used the MBA to
adjust the piston frequency from 10 to 50 Hz. The prototype also used
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conventional (hydraulic) brakes in addition to ABS. It ran on asphalt roads in
dry conditions with a usual friction coefficient. The rotational speed of the
vehicle wheels ranged from 500 to 2250 rpm. The braking pressure was set at
2 kg/mm?, and the braking time was measured from the first braking applied
until the vehicle came to a complete stop.

Electric Motor
Generator
Battery

Energy Capture
Wheel

Gear to gear
Wheel

ECU unit
Speed sensor
Disc Brake
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Figure 1: The vehicle components.

Methods

This study measured the reliability of ABS with a particular frequency range,
which was applied as an RBS of an EV prototype. It ran on a dry asphalt road
with straight paths. Once it reached a specific speed, the ABS worked to stop
it. It was operated without a driver, and its measuring parameters were based
on sensors installed, as illustrated in Figure 2.
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Figure 2: The vehicle configuration.

The experiment measured motor rotation. It means the rotational speed
of the vehicle's tires. Also, this study sized braking time, the time to stop the
prototype, and the electric current generated by the generator due to
regenerative braking. The axle transmission used a centrifugal clutch, as
shown in Figure 3, to ensure that only the braking force rotated the EC wheel
(ECW). The ECU unit regulated the motor power to turn the driving wheel
(DW) until it reached the desired rotation, then tuned off the motor and
switched on the ABS. Power storage was distinguished from a power source,
so the electric current generated by the generator can be read by the ammeter.

Figure 3: The centrifugal clutch.

Dynamic Model

Braking causes the forces on the tires, as described in Figure 4., to be in the
opposite direction to the direction of the vehicle's speed to stop it. Factors that
affect wheel rotation are tire-road friction, vehicle weight, and braking torque
[14]. Vehicle and wheel dynamics models are

Jow = —Te + RFE (1)
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mv = =F,
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where J is the moment of inertia, T. i1s the brakinB{}rque, R is the effective
radius of the wheel, F, is the longitudinal force of the tiran 15 the total mass
of one-quarter of the vehicle, g 1s the specific gravity, v is the longitudinal
speed of the vehicle, w,, 1s the angular speed of the wheels, w, is the angular
speed of the vehicle, p(4) is the coefficient of longitudinal friction of the tire,
/4 1s the wheel slip ratio, T, is the torque due to ground friction.

Figure 4: The wheel dynamic model.

The coefficient of longitudinal friction 1s a function of the slip ratio for
various road conditions, as given in Figure 5. Its value increases with an
increasing slip ratio until it reaches a maximum point, then decreases slowly.
The peak point of m;{)efﬁcient of friction depends on the road conditions. It
15 also the optimal value of the ship ratio.
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Figure 5: The friction coefficient of ship ratio function for various road
conditions [25].

Powertrain

DC motor

The prototype used a DC motor as a drive. Table 1 shows the specifications
where the power source was a battery. The relationship between power and
motor rotational speed is

P, = 2l ™

where P, 1s motor power in Watts, n,, 1s motor speed in rpm, and 7, 1s motor
torque in N.m.

Table 1: Motor specifications

Parameter Value Unit
Voltage 48 Volt
Power 350 Watt
Current 94 Ampere
Load (max) 350 kg
Torque 1.5-7.5 N.m
Speed 500-2750 rpm
Ratio 1:5 —
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DC generator

The generator converted the ECW rotational kinetic energy into electricity,
which will be stored in the battery. Table 2 provides the specifications installed
on the prototype. The emf and the resulting industrial electric current are given
by Equations (8) and (9), respectively.

dip 8

_ Eind
ling = 124 ©)

Where &ing 1s the induced emf in Volts, N 1s the number of windings, ¢ is the
magnetic flux, f is the time, [;,4 18 the induced current in Ampere, and R 1s the

resistance 1 £).

Table 2: Generator specifications

Parameter Value Unit
Voltage 24 Volt
Power 250 Watt
Current 16.4 Ampere
Load (max) 350 kg
Speed rate 2700 rpm

Results and Discussion

This study used two stopwatches to measure braking time. A stopwatch was
attached with a sensor on the wheel. It told the wheel stop time. Another
stopwatch held by the researchers measured the braking time until the vehicle
came to a complete stop. There was a difference in stopping time between the
wheels and the prototype. Figure 6 shows this difference. The piston frequency
range in ABS produced two groups of discussion, the dominance of ABS and
hydraulics. The lower frequency tended to be dominated by ABS.
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(a) (b)

Figure 6: The difference in braking time to stop the wheels and the vehicle:
(a) lower frequency of ABS, (b) higher frequency of ABS and hydraulic.

ABS, with the lowest frequency, has the fewest time difference. It
indicates that the ABS 10 Hz safety factor is very high because there 1s almost
no slip at low speeds [6]. At high speeds above 1000 rpm, the time difference
15 only 0.1 seconds. Therefore, conventional vehicles often use this ABS.

The difference in stopping time caused an increase in the distance to
stop the vehicle. Figure 7 provides the results OfCEllCUl':llillhf: difference in
length to stop the wheels and the prototype. It was the role of friction between
the tires and the road. The smaller the coefficient of friction, the further the
distance increases.
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Figure 7: Distance addition stopping the vehicle: (a) lower frequency of
ABS, (b) higher frequency of ABS and hydraulic.

ABS 10 Hz had the lowest cmnce difference, less than 1 meter, even
at high speeds [12]. It operated on a maximum coefficient of friction, as shown
in Figure 5. Hydraulics had the longest addition distance. It meant that
hydraulic had the highest slip of all types of braking in this study [9].

The work of friction 1s tlajr{}duct of the friction force by the distance
in Figure 7. This work was pure friction between the tires and the road without
the wheel braking [13]. This work was a disadvantage because the vehicle was
supposed to be stopped by braking the wheels, and the optimum frictional
energy from braking was utilized by regenerative braking [18]. Figure 8
describes the calculation of tire friction work.
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Figure 8: The work of friction between the tires and the road to stop the
vehicle: (a) lower frequency of ABS, (b) higher frequency of ABS and
hydraulic.

Hydraulics had an advantage in regenerative braking performance
because the time to stop the wheels was the fastest [15]. The fastest time in
turning the ECW will have given the highest induced emf [27]. Figure 9
llustrates the results of the performance calculation based on the measurement
of the induced current in the generator.

0,20
0,16
0,12
= o008
0,04 + 30 Hz 40 Hz
& 50 Hz = Hydraulic
0,00
500 750 1000 1250 1500 1750 2000 2250

Speed (rpm)
Figure 9: Regenerative braking performance.

The energy stored in batteries said otherwise. Hydraulics provided the
lowest stored energy among other brakes [14]. The fastest ime to stop the
wheel caused the most change in kinetic energy to heat [7]. Figure 10 gives the
results of the calculated energy stored by RBS.
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Figure 10: Energy stored from regenerative braking.

E())

The coefficient of losses 1s the ratio between losses and stored energy.
It will be zero when there are no losses at all. Figure 11 is the result of the
calculation of the coefficient of losses. ABS 10 Hz had the lowest coefficient
of losses, which means it 1s good at EV energy management [16].
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Figure 11: Coefficient of losses (COL): (a) lower frequency of ABS,
(b) higher frequency of ABS and hydraulic.

Conclusion

Many conventional vehicles apply ABS because of its safety and
maneuverability during the braking process. High-frequency ABS made it
close to hydraulic brake performance. During the braking process, there was a
time difference between stopping the wheels and the vehicle. It caused an
increase in the distance due to ship. Hydraulic brakes had the highest time
difference. Meanwhile, ABS 10 Hz had the lowest ime difference.

ABS 10 Hz provided friction loss due to low slip. Therefore, wheel
friction in braking could be optimized in the regenerative braking process. As
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a result, it produced the highest stored energy compared to other braking
systems.
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