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Abstract 

To figure out the dynamics of the mathematical model of measles 
transmission with and without vaccination as a preventive measure is 
the purpose of this paper. The studies carried out include the stability 
analysis of the model, and using a computational program, the 
simulation is performed to synchronize the analytical results. The 
comparison between the stability of measles transmission model with 
vaccination and without vaccination is obtained in this paper. Two 
stationary points are obtained in each population. In terms of 
population with vaccination, 

( )0,11 =T  and ( )
( ) ⎟

⎠
⎞⎜

⎝
⎛

α+μβ
α+μ+β−μ−

β
α+μ= ,2T  

are the stationary points. On the other hand, in population without 
vaccination, 

( )0,13 ε−=T  and ( )( )
( ) ⎟

⎠
⎞⎜

⎝
⎛

α+μβ
α+μ+βε−−μ−

β
α+μ= 1,4T  

are the stationary points. We found 1T  stable for ,α+μ<β  and 2T  
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stable for .α+μ>β  In the second population, the model would be 

stable around 3T  and 4T  when 
ε−
α+μ<β 1  and ,1 ε−

α+μ>β  respectively. 

Background 

It is well known that mathematics and biology are well interrelated. The 
biological interpretation can be quite helpful in guessing identities or 
estimates and even in suggesting quick and elegant proofs (Diekmann et al. 
[7]). Mathematical model became a tool. 

One of real life problems is disease transmission, which be death affected 
or not. Examples of non-fatal diseases are measles, influenza, and other such. 
Duncan et al. [3] conducted research about scarlet fever death in Liverpool 
and they found that the system was oscillatory with clear epidemics on a 
basic endemic level. They used SEIR model. 

This paper discusses about the transmission of measles disease using SIR 
model. Two populations are considered: population with vaccination as a 
preventive measure and population without vaccination, with assumption that 
both of populations are constant and there is no migration from or into the 
population. 

SIR Model 

The transmission of measles disease in a population and in a period time 
can be modelled by the SIR model. Suppose in a certain time t, the 
population consists of: 

• ( ),tS  susceptible: a subpopulation of those members who are 

susceptible to the disease, 

• ( ),tI  infective: a subpopulation of those members who have contacted 

the disease, 

• ( ),tR  recovered: people who have been cured of the disease, 

with the proportion of .1=++ RIS  
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In terms of measles transmission without vaccination, the compartment 
we put together is as follows: 

 

The mathematical model of the diagram is 

,SISdt
dS β−μ−μ=  

,IISIdt
dI α−μ−β=  

.RIdt
dR μ−α=  (1) 

The following diagram is the compartment of measles transmission in 
population with preventive vaccine: 

 

The mathematical model of the diagram is 

( ) ,1 SISdt
dS β−μ−με−=  

,IISIdt
dI α−μ−β=  

,RIdt
dR μ−α+εμ=  (2) 

(Yıldırım and Cherruault [11]), where 



Budi Priyo Prawoto 274 

S is the number of vulnerable population of the measles, 

I is the number of the infected population, 

R is a population recovering from measles, 

μ is natality (positive number), 

β is the rate of disease transmission (positive number), 

α is the rate of recovery (positive number), 

ε is the rate of vaccination between S and R (positive number). 

Equilibrium Points 

To obtain the equilibrium points of a system, the right-hand side of the 
system must be equal to zero (Henner et al. [6]). 

From system (1), we obtain two equilibria ( ),, IS  which are ( )0,11 =T  

and ( )
( ) .,2 ⎟

⎠
⎞

⎜
⎝
⎛

α+μβ
α+μ+β−μ

−
β
α+μ=T  

From system (2), we also obtain two equilibria ( ),, IS  which are =3T  

( )0,1 ε−  and ( )( )
( ) .1,4 ⎟

⎠
⎞

⎜
⎝
⎛

α+μβ
α+μ+βε−−μ

−
β
α+μ=T  

Stability Analysis 

To do the stability analysis of system (1), a linearization is needed. For 
instance, 

( ) ,,,1 SISRISf β−μ−μ=  

( ) .,,1 IISIRISg α−μ−β=  

Then, the Jacobian matrix is 

.⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α−μ−ββ

β−β−μ−
=

SI
SI

J  
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Theorem 1. System (1) is stable at the point ( )0,11 =T  for .α+μ<β  

Proof. For the point ( ),0,11 =T  the Jacobian matrix is given as follows: 

.
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
α−μ−β

β−μ−
=J  

We obtain the eigenvalues μ−=λ1  or .2 α−μ−β=λ  

To make the system stable, we should have .α+μ<β  

Taking ,02.0=μ  ,1.0=α  and ,08.0=β  we obtain the equilibrium 

point ( ).0,11 =T  The behavior of system (1) is shown in Figures 1 and 3. 

 
Figure 1 

Theorem 2. System (1) is stable at the point 

( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛

α+μβ
α+μ+β−μ

−
β
α+μ= ,2T  for .α+μ>β  

Proof. For the point ( )
( ) ,,2 ⎟

⎠
⎞

⎜
⎝
⎛

α+μβ
α+μ+β−μ

−
β
α+μ=T  the Jacobian 

matrix is 
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( )
( ) ( )

( )
( )

,
0 ⎟

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

α+μ
α+μ+β−μ

−

α+μ−
α+μ

α+μ+β−μ
+μ−

=J  

(Anton and Rorres [1]). 

We obtain two eigenvalues, 

( ) ,42
1 2

4,3 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
μ−α−βμ−⎟

⎠
⎞⎜

⎝
⎛

α+μ
μβ±

α+μ
μβ−=λ  

that is 

 (i) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
μ−α−βμ−⎟

⎠
⎞⎜

⎝
⎛

α+μ
μβ+

α+μ
μβ−=λ 42

1 2
3  which is negative 

or the real part is negative for ( ) .04 α+μ>β↔>μ−α−βμ  

(ii) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
μ−α−βμ−⎟

⎠
⎞⎜

⎝
⎛

α+μ
μβ−

α+μ
μβ−=λ 42

1 2
4  which is negative 

or the real part is negative for all positive parameters. 

 
Figure 2 
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Taking ,02.0=μ  ,1.0=α  and ,3.0=β  we obtain the equilibrium point 

( ).1.0,4.02 =T  The behavior of system (1) is shown in Figures 2 and 4. 

 
 Figure 3 Figure 4 

To do the stability analysis of system (2), a linearization is needed. For 
instance, 

( ) ( ) ,1,,2 SISRISf β−μ−με−=  

( ) .,,2 IISIRISg α−μ−β=  

Then, the Jacobian matrix is 

.⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α−μ−ββ

β−β−μ−
=

SI
SI

J  

Theorem 3. System (2) is stable at the point ( )0,13 ε−=T  for <β  

.1 ε−
α+μ  

Proof. For the point ( ),0,13 ε−=T  the Jacobian matrix is given as 

follows: 

( )
( )

.
10

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α−μ−ε−β

ε−β−μ−
=J  

We obtain μ−=λ5  or ( ) .16 α−μ−ε−β=λ  

To make the system stable, we should have .1 ε−
α+μ<β  
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Taking ,02.0=μ  ,1.0=α  3.0=ε  and ,08.0=β  we obtain the 

equilibrium point ( ).0,7.03 =T  The behavior of system (2) is shown in 

Figures 5 and 7. 

 
Figure 5 

Theorem 4. System (2) is stable at the point 

( )( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛

α+μβ
α+μ+βε−−μ

−
β
α+μ=

1,4T  for .1 ε−
α+μ>β  

Proof. For the point ( )( )
( ) ,1,4 ⎟

⎠
⎞

⎜
⎝
⎛

α+μβ
α+μ+βε−−μ

−
β
α+μ=T  the Jacobian 

matrix is 

( )( )
( ) ( )

( )( )
( )

.
01

1

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

α+μ
α+μ+βε−−μ

−

α+μ−
α+μ

α+μ+βε−−μ
+μ−

=J  

We have 

( ) ( ) ( )( ) ,1411
2
1 2

8,7 ⎟
⎟
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⎞

⎜
⎜

⎝

⎛
μ−α−βε−μ−⎟

⎠
⎞

⎜
⎝
⎛
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μβε−

±
α+μ
μβε−

−=λ  
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that is 

 (i) ( ) ( ) ( )( ) ,1411
2
1 2

7 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
μ−α−βε−μ−⎟

⎠
⎞

⎜
⎝
⎛

α+μ
μβε−

+
α+μ
μβε−

−=λ  which 

is negative or the real part is negative for ( )( ) >β↔>μ−α−βε−μ 014  

,1 ε−
α+μ  

(ii) ( ) ( ) ( )( ) ,1411
2
1 2

8 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
μ−α−βε−μ−⎟

⎠
⎞

⎜
⎝
⎛

α+μ
μβε−

−
α+μ
μβε−

−=λ  which 

is negative or the real part is negative for all positive parameters. 

Taking ,02.0=μ  ,1.0=α  ,3.0=ε  and ,3.0=β  we obtain the 

equilibrium point ( ).05.0,4.04 =T  The behavior of system (2) is shown in 

Figures 6 and 8. 

 
Figure 6 
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 Figure 7 Figure 8 

Conclusion 

Two equilibria required in the population without vaccination are =1T  

( )0,1  and ( )
( ) .,2 ⎟

⎠
⎞

⎜
⎝
⎛

α+μβ
α+μ+β−μ

−
β
α+μ=T  In terms of population with 

preventive vaccine, two equilibria, 

( )0,13 ε−=T  and ( )( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛

α+μβ
α+μ+βε−−μ

−
β
α+μ=

1,4T  

are obtained. Points 1T  and 3T  are called disease-free equilibria for each 

model. It is because the infected population I is 0. Points 3T  and 4T  are 

called endemic equilibria for each model because the infected population 
exists. 

The stability of the disease-free equilibria 1T  and 3T  occurs if μ<β  

α+  and ,α+μ>β  respectively. The stability of 3T  and 4T  occurs when 

ε−
α+μ<β 1  and ,1 ε−

α+μ>β  respectively. The stability of the endemic 

equilibrium holds for all the positive parameter values. 
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