

CERTIFICATE

NO. 57228/UN38.I/DL.01.02/2022

THIS CERTIFICATE OF APPRECIATION IS AWARDED TO

Naim Rochmawati
as
Presenter

**In The Fifth International Conference on Vocational Education and Electrical Engineering
(ICVEE) 2022**

THE FUTURE OF ELECTRICAL ENGINEERING, INFORMATICS, AND EDUCATIONAL
TECHNOLOGY THROUGH THE FREEDOM OF STUDY IN THE POST-PANDEMIC ERA

Surabaya, 10-11 September 2022

VICE RECTOR FOR ACADEMICS AFFAIRS

Prof. Dr. Bambang Yulianto, M. Pd.

CONFERENCE CHAIR

Dr. Rr. Hapsari Peni Agustin T, S.T., M.T.

PROCEEDING

ICVEE 2022

2022 Fifth International Conference on Vocational Education and Electrical Engineering (ICVEE)

THE FUTURE OF ELECTRICAL ENGINEERING, INFORMATICS, AND EDUCATIONAL TECHNOLOGY THROUGH THE FREEDOM OF STUDY IN THE POST-PANDEMIC ERA

September
10-11, 2022

IEEE ComSoc
IEEE Communications Society
Indonesia Chapter

ISBN : 978-1-6654-7581-5

Part Number : CFP22X27-ART

2022 Fifth International Conference on Vocational Education and Electrical Engineering (ICVEE)

“The Future Of Electrical Engineering, Informatics, And Educational Technology Through The Freedom Of Study In The Post-Pandemic Era”

Proceeding

Surabaya, Indonesia

(Virtual Conference)

10-11 September 2022

IEEE Conference Number : 57061

IEEE Catalog Number : CFP22X27-ART

ISBN : 978-1-6654-7581-5

Sponsor:

2022 Fifth International Conference on Vocational Education and Electrical Engineering (ICVEE) Proceeding

2022 Fifth International Conference on Vocational Education and Electrical Engineering (ICVEE) on September 10-11, 2022 in the virtual event, Surabaya, Indonesia.

IEEE catalog number	: CFP22X27-ART
ISBN	: 978-1-6654-7581-5

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For copying, reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org.

All rights reserved.

Copyright ©2022 by IEEE.

Welcome Message from the General Chair

ICVEE 2022 is the fifth International Conference on Vocational Education and Electrical Engineering organized by the Faculty of Engineering, Universitas Negeri Surabaya. This year, the theme of this conference is “THE FUTURE OF ELECTRICAL ENGINEERING, INFORMATICS, AND EDUCATIONAL TECHNOLOGY THROUGH THE FREEDOM OF STUDY IN THE POST-PANDEMIC”. Following the theme, this conference aims to bridge the scientists, education experts and practitioners, and students in the scientific forum through sharing ideas and issues about theoretical and practical knowledge in electrical engineering, informatics engineering, engineering education and vocational education.

ICVEE 2022 is attended by presenters from overseas, such as the Brazil, Morocco, Germany, and Indonesia. Hopefully, we can have a productive conference with exciting and encouraging discussions, knowledge exchanges, and networking.

This conference will not be possible without tremendous supports and help from those who give their all-out efforts and hardworking. I am very grateful to all the organizing committee and scientific committee members for their outstanding work to support this conference. Through this conference, we wish to increase our knowledge and work together to advance technology for the humanities.

Sincerely yours,

Dr. Hapsari Peni Agustin T., S.Si., M.T.
Conference Chair
e-mail: hapsaripeni@unesa.ac.id

ICVEE 2022 COMMITTEE

Advisory Board

- Prof. Dr. Nurhasan, M.Kes., Universitas Negeri Surabaya, Indonesia.
- Prof. Dr. H. Bambang Yulianto, M.Pd., Universitas Negeri Surabaya, Indonesia
- Prof. Alexandre Maniçoba De Oliveira, Instituto Federal de São Paulo, Brazil
- Prof. Nobuo Funabiki, Okayama University, Japan
- Dr. Taufiq Asyhari, Birmingham City University, UK
- Prof. Manuel Gradim de Oliveira Gericota, Polytechnic Institute of Porto (IPP), Portugal
- Prof. Subir Kumar Sarkar, Jadavpur University, India
- Prof. Poki Chen, National Taiwan University of Science and Technology, Taiwan
- Spits Warnars Harco, S.Kom., M.T.I., Ph.D, Binus University, Indonesia
- Dr. Elly Matul Imah, M.Kom., Universitas Negeri Surabaya, Indonesia
- Prof. Dr. Supari Muslim , M.Pd, Universitas Negeri Surabaya, Indonesia
- Prof . Dr. Ismet Basuki, M.Pd, Universitas Negeri Surabaya, Indonesia
- Prof. Munoto, M.Pd, Universitas Negeri Surabaya, Indonesia
- Prof. Ekokhariadi, M.Pd, Universitas Negeri Surabaya, Indonesia

Organizing Committee

- General Chair : Dr. RR. Hapsari Peni Agustin T., S.Si. M.T.
- General Co-Chair : Dr. Yeni Anistyasari, S.Pd., M.Kom.
- Secretary : Yuli Sutoto Nugroho, S.Pd., M.Pd.
- TPC Chair : Dr. Nurhayati, S.T., M.T.
- Publication Chair : Dr. Ricky Eka Putra, S.Kom., M.Kom.
- Treasure : Rindu Puspita Wibawa, S.Kom., M.Kom.

Technical Program Committee

- Prof. Kiyoshi Ueda, Nihon University, Japan
- Prof. Dr. Eng Shinji Sugawara, Chiba Institute of Technology, Japan
- Prof. Kazuyuki Kojima, Shonan Institute of Technology, Japan
- Eko Setijadi, MT.,Ph.D, Institut Teknologi Sepuluh Nopember, Indonesia
- Shintami Hidayati, PhD, Institut Teknologi Sepuluh Nopember, Indonesia
- Jiapan Guo., MSc.Ph.D, University of Groningen, Netherlands

- Prof. Alexandre Maniçoba De Oliveira, Instituto Federal de São Paulo, IFSP, Brazil
- Warangkana Chaihongsa, D.Eng King Mongkut's, Institute of Technology Langkrabang, Thailand
- Dr. Umi Laili Yuhana., M.Kom, Institut Teknologi Sepuluh Nopember, Indonesia
- Dr. Tri Budi Santoso., ST., MT., Politeknik Elektronika Negeri Surabaya, Indonesia
- Dr. Rr. Ani Dijah Rahajoe., ST.,M.Cs, Universitas Bhayangkara Surabaya
- Dr. Amirullah., ST., MT., Universitas Bhayangkara Surabaya
- Ir. Wijono, Ph.D, Universitas Brawijaya, Indonesia
- Dr. Eng. Adi Wibowo, S.Si., M.Kom, Universitas Diponegoro, Indonesia
- Krismadinata, Ph. D, Universitas Negeri Padang, Indonesia
- Dr. Diana Purwitasari, Institut Teknologi Sepuluh Nopember, Indonesia
- Royyana Muslim Ijtihadie., Ph.D, Institut Teknologi Sepuluh Nopember, Indonesia
- Dr. Eng. Asep Bayu Dani Nandiyanto, Universitas Pendidikan Indonesia, Indonesia
- Didin Wahyudin, Ph.D, Universitas Pendidikan Indonesia, Indonesia
- Didik Nurhadi., PhD, Universitas Negeri Malang, Indonesia
- Iwan Kustiawan, Ph. D, Universitas Pendidikan Indonesia, Indonesia
- Prof. Moh. Khairuddin, Ph.D, Universitas Negeri Yogjakarta, Indonesia
- Dr. Ade Gafar Abdullah, Universitas Pendidikan Indonesia, Indonesia
- Dr. Nyoman Gunantara., MT, Universitas Udayana, Indonesia
- Dr. Umaisaroh., MT, Universitas Mercu Buana, Jakarta, Indonesia
- Dr. Indah Kurniawati., MT, Universitas Muhammadiyah Surabaya, Indonesia
- Dr. Farah Afianti., M. Kom, Telkom University, Indonesia
- Dr. Mike Yuliana, Politeknik Elektronika Negeri Surabaya, Indonesia
- Dr. Syahfrizal tahcfullah., MT, Universitas Borneo Tarakan, Indonesia
- Teuku Muhammad Roffi., Ph.D, Universitas Pertamina, Indonesia
- Dr. Hakkun Elmunsyah, Universitas Negeri Malang, Indonesia
- Dr. Verry Ronny Palinglingan, Universitas Negeri Manado, Indonesia
- Dr. Ing. Parabelem Tinno dolf Rompas., M.Eng, Universitas Negeri Manado, Indonesia
- Dr. Lala Septem Riza., MT, Universitas Pendidikan Indonesia, Indonesia
- Dr. Endi Suhendi., M.Si., Universitas Pendidikan Indonesia, Indonesia
- Ilmi Jazuli Ichsan., M.Pd, Universitas Negeri Jakarta, Indonesia
- Dr. Lilik Anifah, MT, Universitas Negeri Surabaya, Indonesia
- Prof. Dr. IGP Asto Buditjahjanto, MT, Universitas Negeri Surabaya, Indonesia

- Dr. Nurhayati, ST., MT, Universitas Negeri Surabaya, Indonesia
- Dr. Lusia Rakhmawati, M.T., Universitas Negeri Surabaya, Indonesia
- Dr. Yuni Yamasari., M.Kom, Universitas Negeri Surabaya, Indonesia
- Unit Three Karini., Ph.D, Universitas Negeri Surabaya, Indonesia
- Dr. Hapsari Peni Tjahyaningtjas., MT, Universitas Negeri Surabaya, Indonesia
- Utama Alan Deta., M.Pd, Universitas Negeri Surabaya, Indonesia
- Naim Rochmawati., M.Kom, Universitas Negeri Surabaya, Indonesia
- Dr. Ricky Eka Putra, S.Kom., M.Kom, Universitas Negeri Surabaya, Indonesia
- Dr. Dedy Kurnia Setiawan, ST, MT, Universitas Jember, Indonesia
- Dr. Evi Septiana Pane, M.T., Ministry of Industry, Indonesia
- Arif Widodo, S.T., M.T., Okayama University, Japan
- Rifqi Firmansyah, S.T., M.T., King Abdulaziz University, Saudi Arabia
- Pradini Puspitaningayu, S.T., M.T., Okayama University, Indonesia
- Dr. Ari Endang Jayati, S.T., M.T., Universitas Semarang, Indonesia
- Dr. Rima Tri Wahyuningrum, M.T., Universitas Trunojoyo, Indonesia

2022 5th International Conference on Vocational Education and Electrical Engineering (ICVEE)

PROGRAM SCHEDULE**10th September 2022**MC: *Paramitha Nerisafitra, S.ST., M.Kom*

Roswina Dianawati, S.Pd., M.Ed

Time (GMT+7)	Activity
07.00 – 08.00	Online Registration
08.00 – 08.05	Opening and Rule Guidance
08.05 – 08.10	Listening Indonesia National Anthem
	Listening Mars of Universitas Negeri Surabaya
08.10 – 08.15	Conference report by ICVEE chair
08.15 – 08.25	Welcome Speech from Rector of Universitas Negeri Surabaya Prof. Dr. Nur Hasan.M. Kes
08.25 – 08.35	IEEE Comsoc Indonesia Chapter Chair Opening speech: Dr. Bambang Setia Nugroho
08.35 – 08.45	Advisory Board Committee Representative Speech: Prof. Nobuo Funabiki Okayama University
08.45-08.55	Photo session
PLENARY SESSION I	
09.00 – 09.50	Keynote speaker 1 Prof. Auzuir Ripardo de Alexandria Instituto Federal de Educação Ciência e Tecnologia do Ceará: Fortaleza, CE (Brazil) Moderator : Dr. Pradini Puspitaningayu, S.T., M.T

09.50 – 10.40	Keynote speaker 2 Prof. Dr. I Gusti Putu Asto B., S.T., M.T. Dept. of Electrical Engineering State University of Surabaya (Indonesia) Moderator : Dr. Yeni Anistyasari
10.40-10.45	Awarding Token of Appreciation I
11.00 – 12.00	PARALLEL SESSION I (5 breakout rooms) Room 1 – 5
12.00 – 12.30	BREAK
PLENARY SESSION II	
12.30 – 13.20	Keynote speaker 3 Dr. Sven Schulte Scientific Researcher and Lecturer TU Dortmund University (Germany) Moderator : Dr. Lilik Anifah, M.T
13.20 – 13.25	Awarding Token of Appreciation II
13.25 – 13.45	Break
13.45 – 15.30	PARALLEL SESSION II (5 breakout rooms) Room 1-5
15.30 – 15.45	Closing Ceremony

Parallel Session:

Room 1

Moderator : Dr. Lilik Anifah

No	ID	Time	Author	Title
1	625	11.00-11.15	Fiqey Indriati Eka Sari, Frederick William Edlim, Fitrah Arie Ramadhan, Muhtadin Muhtadin and Dini Adni Navastara	Performance Analysis of Resampling and Ensemble Learning Methods on Diabetes Detection as Imbalanced Dataset
2	2238	11.15-11.30	Evianita Dewi Fajrianti, Sitrusta Sukaridhoto, Nobuo Funabiki, Muhammad Udin Harun Al Rasyid, Rizqi Putri Nourma Budiarti and Yohanes Yohanie Fridelin Panduman	Design and Implementation of Indoor Navigation for PENS Visitors Using Augmented Intelligence
3	3145	11.30-11.45	Raymond Sunardi Oetama, Ford Lumban Gaol, Benfano Soewito and Harco Leslie Hendric Spits Warnars	When Candlesticks are different among Forex Brokers, can Traders still win?
4	4765	11.45-12.00	Lilik Anifah, Puput Wanarti Rusimamto, Haryanto Haryanto, I Made Arsana, Subuh Isnur Haryudo and Meini Sondang Sumbawati	Dentawayanjana Character Segmentation Using K-Means Clustering CLAHE Adaptive Thresholding Based
5	5178	13.45-14.00	Hapsari Peni Agustin Tjahyaningtjas, Laras Suciningtyas, Naim Rochmawati, Lusia Rakhmawati, Cucun Very Angkoso and Andi Kurniawan Nugroho	Brain Tumor Classification Using Deep Neural Network Based on MRI Images
6	5527	14.00-14.15	Rommel Traya, Raisa Mel Verona, Lady Ann Malatbalat, Lyra Nuevas, Dindo Obediencia, Ma. Windie Velarde and Raymond Daylo	Android Mobile Application: Tsunami Alert System with an Escape Route for Evacuation in Municipal

				Disaster Risk Reduction and Management Office
7	6340	14.15-14.30	Surjandy Surjandy and Cadelina Cassandra	The Influence of Information Quality, Trust, and Risk Factors of The Digital Advertising on Buying Decision
8	7011	14.30-14.45	Yuni Yamasari, Anita Qoiriah, Naim Rochmawati, I.M. Suartana, Oddy Virgantara Putra and Andi Iwan Nurhidayat	Exploring the Kernel on SVM to Enhance the Classification Performance of Students' Academic Performance
9	9057	14.45-15.00	Yeni Kustiyahningsih, Eza Rahmanita, Devie Rosa Anamisa and Jaka Purnama	An integrated approach to determine mapping of SMEs during Covid-19 pandemic
10	9414	15.00-15.15	Evi Pane, Diah Risqiwati, Adhi Dharma Wibawa and Mauridhi Hery Purnomo	Gender Difference in EEG Emotion Recognition with Overlapping Shifting Window
11	9654	15.15-15.30	Cucun Very Angkoso, Ari Kusumaningsih, Hapsari Peni Agustin Tjahyaningtjas and Andi Kurniawan Nugroho	Multiclass Deep Transfer Learning for Covid 19 Classification

2022 5th International Conference on Vocational Education and Electrical
Engineering (ICVEE)

Room 2

Moderator : Dr. Nurhayati

No	ID	Time	Authors	Title
1	892	11.00-11.15	Sepyan Purnama Kristanto, Lutfi Hakim, Dianni Yusuf, Endi Sailul Haq and Aditya Roman Asyhari	Classification of Public Opinion on Vaccine Administration Using Convolutional Neural Network
2	2181	11.15-11.30	Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Pradini Puspitaningayu, Masaki Sakagami and Sritrusta Sukaridhoto	Implementations of Integration Functions in IoT Application Server Platform
3	3087	11.30-11.45	Beatriz Silva Brasil, Auzuir Ripardo de Alexandria and Glendo de Freitas Guimarães	Artificial Intelligence applied to the classification of retinal diseases in Optical Coherence Tomography images
4	3229	11.45-12.00	Abdul Rahman Patta, Nobuo Funabiki, Yan Watequlis Syaifudin and Wen Chung Kao	An Implementation of Solving Activity Monitoring Function in Android Programming Learning Assistance System
5	6606	13.45-14.00	Pradini Puspitaningayu, Nobuo Funabiki, Yuanzhi Huo, Yohanes Panduman, Xinyu Wu, Minoru Kurabayashi and Wen-Chung Kao	Accuracy Investigations of Fingerprint-based Indoor Localization System Using IEEE 802.15.4 in Two- Floor Environment
6	7160	14.00-14.15	Naim Rochmawati, Hanik Badriyah Hidayati, Wiyli Yustanti, Yuni Yamasari, Hapsari Peni Agustin Tjahyaningtijas,	Brain Tumor Classification Using Transfer Learning

			Ricky Eka Putra and I Made Suartana	
7	7548	14.15- 14.30	Cahya Rahmad, evi Enggar Sukmana and Arie Rachmad Syulistyo	An Automatic Egg Quality Grading Using Nature- Inspired Algorithm Based Classification
8	7992	14.30- 14.45	Irin Tri Anggraini, Nobuo Funabiki, Pradini Puspitaningayu, Shih-Wei Shen, Wan- Chia Huang and Chih-Peng Fan	Implementation and Evaluation of Exercise and Performance Learning Assistant System Platform for Yoga Pose Practices Using Node.js
9	8015	14.45- 15.00	Shintami Hidayati, Nafa Zulfa, Pima Safitri and Yeni Anistyasari	Exploring the Potential of Adopting Computer- graphics Animation to the Switch to a Plant-Based Diet
10	8979	15.00- 15.15	Glenn Gumba and Jessie Paragas	Prediction Analysis of Student Admission to Information Technology education (ITE) Programs using Classification Algorithm
11	9126	15.15- 15.30	Miftahur Rohman, Farid Baskoro, Widi Aribowo, Yuli Sutoto Nugroho, Aristyawan Putra Nurdiansyah and L. Endah Cahya Ningrum	Selection of the modulation, distance, and number of hop nodes parameters to determine the minimum energy in the wireless sensor network

Room 3

Moderator : Unit Three Kartini. Ph.D

No	ID	Time	Authors	Title
1	276	11.00- 11.15	Unit Three Kartini, Bambang Suprianto, I.G. P Asto Budijahjanto, Lilik Anifah, Nurhayati Nurhayati and Mochamad Nur Adiwana	Optimization Global Horizontal Irradiance Based On Weather Data Using Hybrid model Modified Decomposition FeedForward Neural Network
2	409	11.15- 11.30	Rifqi Firmansyah	Power Sharing Control and Voltage Restoration in DC Microgrid Using PI Fuzzy
3	3634	11.30- 11.45	Widi Aribowo, Reza Rahmadian, Ayusta Wardani, Mahendra Widyartono, Bambang Suprianto and Aditya Chandra Hermawan	Marine Predators Algorithm For Tuning DC Motor
4	4967	11.45- 12.00	Adhi Kusmantoro	Enhancement DC Microgrid Power Stability With a Centralized
5	6910	13.45- 14.00	Yanuar Zulardiansyah Arief, Hendri Masdi, Nur Izziani Roslan, Mohd Hafiez Izzwan Saad, Hamzah Eteruddin and Rosyid Ridlo Al Hakim	Investigation on Various Faults of 500 kV Transmission Line Design in Sarawak, Malaysia Using Power Systems Computer Aided Design
6	7243	14.00- 14.15	Unit Three Kartini, Hariyati Hariyati, Widi Aribowo and Ayusta Lukita Wardani	Development Hybrid Model Deep Learning Neural Network (DL-NN) For Probabilistic Forecasting Solar Irradiance on Solar Cells To Improve Economics Value Added

7	7547	14.15- 14.30	Ilham A.E. Zaeni, Wahyu Primadi, Dassy Rif'A Anzani and Anik Nur Handayani	Detection of the Imbalance Step Length using the Decision Tree
8	8559	14.30- 14.45	Yanuar Zulardiansyah Arief, Hendri Masdi, Kelvin Juing Anak Tinggom, Aulia, Irza Sukmana and Rosyid Ridlo Al Hakim	Simulation of Water Tree Defect on Different Type of XLPE Underground Power Cable Using Finite Element Analysis
9	9022	14.45- 15.00	Widi Aribowo, Reza Rahmadian, Mahendra Widyattono, Aditya Chandra Hermawan, Ayusta Lukita Wardani and Unit Three Kartini	Tasmanian Devil Optimization For Economic Load Dispatch
10	9597	15.00- 15.15	Nibras Syarif Ramadhan, Indra Ferdiansyah and Era Purwanto	Voltage Booster for Optimizing Scalar Control Methods on Single Passenger Electric Vehicles
11	9806	15.15- 15.30	Jamiu Omotayo Oladigbolu, Mustafa M.A. Seedahmed, Rifqi Firmansyah Muktiadji and Amir A. Imam	Optimal Design and Viability Assessment of a Stand-alone Hybrid Power System for the Electrification of a Grid-unconnected Location in Saudi Arabia

Room 4

Moderator : Dr. Lusia Rakhmawati

No	ID	Time	Authors	Title
1	2684	11.00- 11.15	Yuli Sutoto Nugroho, Munoto Munoto, Ismet Basuki and Rr. Hapsari Peni Agustin T	Study of Electrical Engineering Students' Interests Comparison between Video-Based Learning and Online Meetings
2	4772	11.15- 11.30	Hakkun Elmunsyah, Wahyu Nur Hidayat, Hary Suswanto, Khoir, Muhammad Akhsan Hakiki and Kusumadyahdewi Kusumadyahdewi	Development of Mobile Learning Applications With Augmented Reality to Build VHS Students' Critical Thinking
3	5137	11.30- 11.45	Banni Satria Andoko, Putra Prima Arhandi, Faiz Ushbah Mubarok, Mungki Astiningrum, Tsukasa Hirashima and Muhammad Fachry Najib	Constructing Toulmin's Logical Structure Through Viat-map Application For Reading Comprehension of EFL Students
4	5716	11.45- 12.00	Arda Editya, Neny Kurniati and Angga Lisdiyanto	Optimization Jaro Winkler Algorithm Using Fuzzy Logic to Evaluate Essay Questions in E- Learning System Based Microserver
5	5985	13.45- 14.00	Mohammad Idhom, Munoto Munoto, I Gusti Putu Asto Buditjahjanto and Muchlas Samani	Performance Evaluation of Automated Essay Scoring Online System for Competency Assessment of Community Academy
6	8164	14.00- 14.15	Joko Joko, Agus Budi Santoso and Parama Diptya Widayaka	The Effect of Learning Readiness and Prerequisite

				Courses on Project-Based Learning on Student Competencies in Working on Electrical Machine Repair Projects in The Post Covid-19 Transition Period
7	8336	14.15-14.30	Khoirudin Asfani, Hakkun Elmunsyah, Syaad Patmanthara, Wahyu Nur Hidayat, Harry Suswanto and Halizah Binti Awang	Distance Learning Scheme with Remote Desktop Application for Mikrotik Configuration Practice in the Covid-19 Pandemic Era
8	8415	14.30-14.45	Lusia Rakhmawati, Achmad Imam Agung and Miftahur Rohman	Virtual Laboratory-Based Student Worksheets Development for Computational Thinking Practices
9	9697	14.45-15.00	Subuh Haryudo, Euis Ismayati and Farid Baskoro	Development of Training Kit for Solar Cell Off-Grid System based on Project-based Learning to improve learning outcomes
10	9816	15.00-15.15	Sunarti Sunarti and Irawan Dwiwahyono	Optimizing the Certainty Factor on K-Nearest Neighbor to Determine the Learning Model during the Pandemic

Table of Contents

Proceeding Cover.....	i
Copyright Page.....	ii
Welcome Massage.....	iii
ICVEE 2022 Committee.....	iv
Conference Program Schedule.....	vii
Table of Content.....	xvii

List of Article

No	ID	Title	Page
1	0625	Performance Analysis of Resampling and Ensemble Learning Methods on Diabetes Detection as Imbalanced Dataset <i>Fiqey Indriati Eka Sari, Frederick William Edlim, Fitrah Arie Ramadhan, Muhtadin Muhtadin and Dini Adni Navastara</i>	1
2	2238	Design and Implementation of Indoor Navigation for PENS Visitors Using Augmented Intelligence <i>Evianita Dewi Fajrianti, Sritrusta Sukaridhoto, Nobuo Funabiki, Muhammad Udin Harun Al Rasyid, Rizqi Putri Nourma Budiarti and Yohanes Yohanie Fridelin Panduman</i>	7
3	3145	When Candlesticks are different among Forex Brokers, can Traders still win? <i>Raymond Sunardi Oetama, Ford Lumban Gaol, Benfano Soewito and Harco Leslie Hendric Spits Warnars</i>	13
4	4765	Dentawyanjana Character Segmentation Using K-Means Clustering CLAHE Adaptive Thresholding Based <i>Lilik Anifah, Puput Wanarti Rusimamto, Haryanto Haryanto, I Made Arsana, Subuh Isnur Haryudo and Meini Sondang Sumbawati</i>	19
5	5178	Brain Tumor Classification Using Deep Neural Network Based on MRI Images <i>Hapsari Peni Agustin Tjahyaningtjas, Laras Suciningtyas, Naim Rochmawati, Lusia Rakhmawati, Cucun Very Angkoso and Andi Kurniawan Nugroho</i>	25
6	5527	Android Mobile Application: Tsunami Alert	30

		System with an Escape Route for Evacuation in Municipal Disaster Risk Reduction and Management Office <i>Rommel Traya, Raisa Mel Verona, Lady Ann Malatbalat, Lyra Nuevas, Dindo Obediencia, Ma. Windie Velarde and Raymond Daylo</i>	
7	6340	The Influence of Information Quality, Trust, and Risk Factors of The Digital Advertising on Buying Decision <i>Surjandy Surjandy and Cadelina Cassandra</i>36
8	7011	Exploring the Kernel on SVM to Enhance the Classification Performance of Students' Academic Performance <i>Yuni Yamasari, Anita Qoiriah, Naim Rochmawati, I.M. Suartana, Oddy Virgantara Putra and Andi Iwan Nurhidayat</i>42
9	9057	An integrated approach to determine mapping of SMEs during Covid-19 pandemic <i>Yeni Kustiyahningsih, Eza Rahmanita, Devie Rosa Anamisa and Jaka Purnama</i>47
10	9414	Gender Difference in EEG Emotion Recognition with Overlapping Shifting Window <i>Evi Pane, Diah Risqiwati, Adhi Dharma Wibawa and Mauridhi Hery Purnomo</i>54
11	9654	Multiclass Deep Transfer Learning for Covid 19 Classification <i>Cucun Very Angkoso, Ari Kusumaningsih, Hapsari Peni Agustin Tjahyaningtijas and Andi Kurniawan Nugroho</i>60
12	0892	Classification of Public Opinion on Vaccine Administration Using Convolutional Neural Network <i>Sepyan Purnama Kristanto, Lutfi Hakim, Dianni Yusuf, Endi Sailul Haq and Aditya Roman Asyhari</i>65
13	2181	Implementations of Integration Functions in IoT Application Server Platform <i>Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Pradini Puspitaningayu, Masaki Sakagami and Sritrusta Sukaridhoto</i>72
14	3087	Artificial Intelligence applied to the classification of retinal diseases in Optical Coherence Tomography images <i>Beatrix Silva Brasil, Auzuir Ripardo de Alexandria and Glendo de Freitas Guimarães</i>78

15	3229	An Implementation of Solving Activity Monitoring Function in Android Programming Learning Assistance System <i>Abdul Rahman Patta, Nobuo Funabiki, Yan Watequlis Syaifudin and Wen Chung Kao</i>84
16	6606	Accuracy Investigations of Fingerprint-based Indoor Localization System Using IEEE 802.15.4 in Two-Floor Environment <i>Pradini Puspitaningayu, Nobuo Funabiki, Yuanzhi Huo, Yohanes Panduman, Xinyu Wu, Minoru Kurabayashi and Wen-Chung Kao</i>89
17	7160	Brain Tumor Classification Using Transfer Learning <i>Naim Rochmawati, Hanik Badriyah Hidayati, Wiyli Yustanti, Yuni Yamasari, Hapsari Peni Agustin Tjahyaningtjas, Ricky Eka Putra and I Made Suartana</i>95
18	7992	Implementation and Evaluation of Exercise and Performance Learning Assistant System Platform for Yoga Pose Practices Using Node.js <i>Irin Tri Anggraini, Nobuo Funabiki, Pradini Puspitaningayu, Shih-Wei Shen, Wan-Chia Huang and Chih-Peng Fan</i>100
19	8015	Exploring the Potential of Adopting Computer-graphics Animation to the Switch to a Plant-Based Diet <i>Shintami Hidayati, Nafa Zulfa, Pima Safitri and Yeni Anistyasari</i>106
20	8979	PREDICTION ANALYSIS OF STUDENT ADMISSION TO INFORMATION TECHNOLOGY EDUCATION (ITE) PROGRAMS USING CLASSIFICATION ALGORITHM <i>Glenn Gumba and Jessie Paragas</i>112
21	9126	Selection of the modulation, distance, and number of hop nodes parameters to determine the minimum energy in the wireless sensor network <i>Miftahur Rohman, Farid Baskoro, Widi Aribowo, Yuli Sutoto Nugroho, Aristyawan Putra Nurdiansyah and L. Endah Cahya Ningrum</i>118
22	0276	Optimization Global Horizontal Irradiance Based On Weather Data Using Hybrid model125

		Modified Decomposition FeedForward Neural Network	
		<i>Unit Three Kartini, Bambang Suprianto, I.G. P Asto Buditjahjanto, Lilik Anifah, Nurhayati Nurhayati and Mochamad Nur Adiwana</i>	
23	0409	Power Sharing Control and Voltage Restoration in DC Microgrid Using PI Fuzzy130
24	3634	Marine Predators Algorithm For Tuning DC Motor136
		<i>Widi Aribowo, Reza Rahmadian, Ayusta Wardani, Mahendra Widyartono, Bambang Suprianto and Aditya Chandra Hermawan</i>	
25	4967	Enhancement DC Microgrid Power Stability With a Centralized141
		<i>Adhi Kusmantoro</i>	
26	6910	Investigation on Various Faults of 500 kV Transmission Line Design in Sarawak, Malaysia Using Power Systems Computer Aided Design146
		<i>Yanuar Zulardiansyah Arief, Hendri Masdi, Nur Izziani Roslan, Mohd Hafiez Izzwan Saad, Hamzah Eteruddin and Rosyid Ridlo Al Hakim</i>	
27	7243	Development Hybrid Model Deep Learning Neural Network (DL-NN) For Probabilistic Forecasting Solar Irradiance on Solar Cells To Improve Economics Value Added151
		<i>Unit Three Kartini, Hariyati Hariyati, Widi Aribowo and Ayusta Lukita Wardani</i>	
28	7547	Detection of the Imbalance Step Length using the Decision Tree157
		<i>Ilham A.E. Zaeni, Wahyu Primadi, Dessy Rif'A Anzani and Anik Nur Handayani</i>	
29	8559	Simulation of Water Tree Defect on Different Type of XLPE Underground Power Cable Using Finite Element Analysis163
		<i>Yanuar Zulardiansyah Arief, Hendri Masdi, Kelvin Juing Anak Tinggom, Aulia, Irza Sukmana and Rosyid Ridlo Al Hakim</i>	
30	9022	Tasmanian Devil Optimization For Economic Load Dispatch169
		<i>Widi Aribowo, Reza Rahmadian, Mahendra Widyartono, Aditya Chandra Hermawan, Ayusta Lukita Wardani and Unit Three Kartini</i>	
31	9597	Voltage Booster for Optimizing Scalar Control Methods on Single Passenger Electric Vehicles174
		<i>Nibras Syarif Ramadhan, Indra Ferdiansyah</i>	

		<i>and Era Purwanto</i>	
32	9806	Optimal Design and Viability Assessment of a Stand-alone Hybrid Power System for the Electrification of a Grid-unconnected Location in Saudi Arabia <i>Jamiu Omotayo Oladigbolu, Mustafa M.A. Seedahmed, Rifqi Firmansyah Muktiadji and Amir A. Imam</i>178
33	2684	Study of Electrical Engineering Students' Interests Comparison between Video-Based Learning and Online Meetings <i>Yuli Sutoto Nugroho, Munoto Munoto, Ismet Basuki and Rr. Hapsari Peni Agustin T</i>184
34	4772	Development of Mobile Learning Applications With Augmented Reality to Build VHS Students' Critical Thinking <i>Hakkun Elmunsyah, Wahyu Nur Hidayat, Hary Suswanto, Khoirudin Asfani, Muhammad Akhsan Hakiki and Kusumadyahdewi Kusumadyahdewi</i>192
35	5137	Constructing Toulmin's Logical Structure Through Viat-map Application For Reading Comprehension of EFL Students <i>Banni Satria Andoko, Putra Prima Arhandi, Faiz Ushbah Mubarok, Mungki Astiningrum, Tsukasa Hirashima and Muhammad Fachry Najib</i>198
36	5716	Optimization Jaro Winkler Algorithm Using Fuzzy Logic to Evaluate Essay Questions in E-Learning System Based Microserver <i>Arda Editya, Neny Kurniati and Angga Lisdiyanto</i>203
37	5985	Performance Evaluation of Automated Essay Scoring Online System for Competency Assessment of Community Academy <i>Mohammad Idhom, Munoto Munoto, I Gusti Putu Asto Buditjahjanto and Muchlas Samani</i>208
38	8164	The Effect of Learning Readiness and Prerequisite Courses on Project-Based Learning on Student Competencies in Working on Electrical Machine Repair Projects in The Post Covid-19 Transition Period <i>Joko Joko, Agus Budi Santoso and Parama Diptya Widayaka</i>213

39	8336	Distance Learning Scheme with Remote Desktop Application for Mikrotik Configuration Practice in the Covid-19 Pandemic Era <i>Khoirudin Asfani, Hakkun Elmunsyah, Syaad Patmanthara, Wahyu Nur Hidayat, Hary Suswanto and Halizah Binti Awang</i>218
40	8415	Virtual Laboratory-Based Student Worksheets Development for Computational Thinking Practices <i>Lusia Rakhmawati, Achmad Imam Agung and Miftahur Rohman</i>224
41	9697	Development of Training Kit for Solar Cell Off-Grid System based on Project-based Learning to improve learning outcomes <i>Subuh Haryudo, Euis Ismayati and Farid Baskoro</i>229
42	9816	Optimizing the Certainty Factor on K-Nearest Neighbor to Determine the Learning Model during the Pandemic <i>Sunarti Sunarti and Irawan Dwiwahyono</i>233
Authors index.....			xxiii

Brain Tumor Classification Using Transfer Learning

1st Naim Rochmawati
Department of Informatics
Universitas Negeri Surabaya
Surabaya, Indonesia
naimrochmawati@unesa.ac.id

2nd Hanik Badriyah Hidayati
Department of Neurology Universitas
Airlangga
Surabaya, Indonesia
hanikhidayati@fk.unair.ac.id

3rd Yuni Yamasari
Department of Informatics
Universitas Negeri Surabaya
Surabaya, Indonesia
yuniyamasari@unesa.ac.id

4th Wiyli Yustanti
Department of Informatics
Universitas Negeri Surabaya
Surabaya, Indonesia
wyliyustanti@unesa.ac.id

5th I Made Suartana
Department of Informatics
Universitas Negeri Surabaya
Surabaya, Indonesia
madesuertana@unesa.ac.id

6th Agus Prihanto
Department of Informatics
Universitas Negeri Surabaya
Surabaya, Indonesia
agusprihanto@unesa.ac.id

7th Aditya Prapanca
Department of Informatics
Universitas Negeri Surabaya
Surabaya, Indonesia
adityaprapanca@unesa.ac.id

Abstract— One type of deadly disease is a brain tumor. To determine the presence of a brain tumor, it can be seen from an MRI image. In this research, we classified brain tumor MRI. The classification system uses transfer learning because only a few datasets are used. The Pre-Trained models used to extract features are VGG-16 and ResNet-50. Tests are carried out using several different parameters such as different batch sizes, optimizers, and learning rates. We evaluate the results using the confusion matrix. VGG-16 got the best accuracy of 0.96 using the Adam optimizer and ResNet-50 got the best accuracy of 0.94 using the RMSprop optimizer. From several different parameter variations, there is a relationship between parameter selection and accuracy results.

Keywords— transfer learning, pre-trained model, Vgg-16, ResNet-50, brain tumor, optimizer, Adam, SGD, RMSProp

I. INTRODUCTION

Humans live side by side with many diseases. One type of deadly disease is a brain tumor[1]. The brain is a vital organ that functions to move other body systems. It can be said, this organ is the center for regulating other body organs to work. If there is a disturbance or problem with the brain, it certainly affects on the performance of the body's organs as a whole.

Magnetic resonance imaging (MRI) is an imaging test that uses a magnetic field and radio waves to assess the inside of the body. This imaging examination is good for assessing soft tissues in the body, including the brain. So to find out whether the brain contains a tumor or normal can be seen from an MRI images

Machine learning is a branch of artificial intelligence (AI) where the way it works is imitating the way humans learn without the need to be given explicit instructions. Examples of machine learning apparently exist in various forms that are very familiar with daily activities. Starting from transportation, technology, finance, education, health, and also social media. In short, it has been used for a lot of real-world applications[2]

One of the methods commonly used in machine learning is Convolutional Neural Network (CNN). Convolutional Neural Network or sometimes also called as ConvNet is part of a deep neural network, which is a type of artificial neural

network that is generally used in image recognition and processing. This algorithm is specially designed for processing pixel data and visual images.

However, to find a model that has good accuracy and avoids overfitting, a large dataset is required. The more and more varied a dataset that is trained, it allows the resulting model to have better accuracy. The problem arises when the dataset used is small. One solution to overcome this is to use the transfer learning method.

Transfer learning is a method that has the basic principle of utilizing a previously trained model to be re-implemented in a new dataset where the existing dataset is not ideal enough to be trained from the beginning.

A pre-trained model is the use of pre-trained models which were trained on a large dataset by other people to solve our problem. There are many kinds of pre-trained models that have been published and are usually used as references in research, namely VGG, ResNet-50, Inception, Mobilenet, and many others. This study uses VGG-16 and ResNet-50.

In deep learning, to get good accuracy results, an optimization algorithm is needed or what is commonly called an optimizer. An optimizer is a function or algorithm that will modify NN attributes such as weight and learning rate so that it will improve the accuracy value. There are many kinds of optimizers. Three of them are Stochastic Gradient Descent (SGD), Adam, and Root Mean Square Propagation (RMSProp).

This study aims to classify brain tumors using a small dataset using the transfer learning method. The second goal is to explore the optimizer, learning rate, batch size, and epoch in the classification of brain tumor datasets to determine the relationship and their effect on the accuracy of results obtained.

A. Related Work

Several researchers have conducted research related to brain tumors. Brain tumor comparisons were carried out by Mehrotra et al using transfer learning methods AlexNet, SqueezeNet, ResNet-50, and GoogleNet. The best accuracy is obtained from Pre-Trained Alexnet with 99.4% accuracy with optimizer SGD and RMSProp[3]. Another study that compared the VGG-16, VGG-19, and Alexnet transfer learning methods has also been carried out with the best

accuracy results being VGG-19[4]. Deepak et al. perform feature extraction using GoogleNet transfer learning with KNN and SVM classifiers[5].

In addition, there are also other methods used in classifying brain tumors using ensemble learning [13].

Research on brain tumor was developed by several researchers with various methods such as CNN-SVM [6], AlexNet [7], GoogleNet [8][9][10], VGGNet [11], ResNet-50 [12], In addition, there are also other methods used in classifying brain tumors using ensemble learning [13].

II. RESEARCH METHOD

This chapter describes the sequence of methods used in this research. This research has 6 steps, namely data retrieval, image preprocessing, Split dataset, Augmentation, comparing two methods of Pre-Trained VGG-16 and ResNet-50 models, Measurement. The sequence of steps can be seen in Fig..1.

The following is an explanation of each step in the diagram in Fig. 1:

A. Dataset

The dataset used in this study was taken from Kaggle[14]. The brain tumor MRI dataset consists of 253 images. these images are divided into two folders with the title yes and no. in the yes folder, there are 155 images consisting of brain images containing tumors and in the no folder, there are about 98 images where brain images do not contain tumors aka normal.

Some sample datasets of normal brain images without tumors can be seen in Fig. 2.

This dataset is a public dataset and can be downloaded from the Kaggle website.

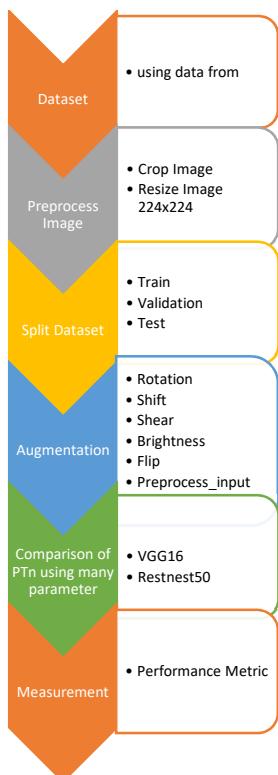


Fig.1. Research Method Diagram

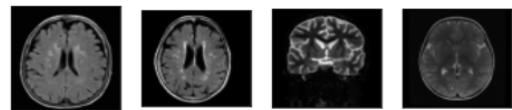


Fig. 2. Sample dataset of Brain MRI Images of NO

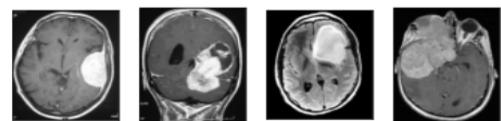


Fig. 3. Sample dataset of Brain MRI Images of YES

While the brain image dataset containing the tumor is shown in Fig. 3

B. PreProcessing

The preprocessing consists of two steps, cropping the image by looking for the left, right, top, and bottom points. Then the image will be cropped to the point where it is obtained.

Then the image is resized to 224x224. Because the transfer learning method used is VGG-16 and ResNet-50, the image size will be changed to 224x224.

Next, the dataset is divided into three parts, training, validation, and testing.

C. Augmentation

Because the dataset used is small, it is necessary to do augmentation before training. Augmentation is a technique of manipulating data by performing input operations of rotation, shift, shear, brightness, flip, and preprocessing.

This operation is done to avoid overfitting by making the data more varied. If the dataset is trained without augmentation first, the performance and accuracy will be worse than the dataset that has been augmented.

D. Comparison of Pre-Trained Models

Before discussing the comparison, we will first explain about Transfer learning.

1) Transfer Learning

Transfer learning is a technique that utilizes a pre-trained model to be used to classify new datasets so that there is no need to train data from the beginning. More details can be seen in Fig. 4.

Fig. 4. Transfer Learning

There are two kinds of pre-trained that will be used:

a) *VGG-16*

VGG-16 is one of the CNN architectural models that won the ILSVR competition in 2014. VGG16 is a CNN model that utilizes a convolutional layer with a small convolutional filter specification (3×3). With the size of the convolutional filter, the depth of the neural network can be increased by more convolutional layers. As a result, the model is more accurate than previous CNN models.

The VGG16 model consists of 16 convolutional layers. The VGG-16 architectural model can be seen in Fig. 5.

b) *ResNet-50*

ResNet-50 was first introduced by Kaiming et al in their paper entitled Deep Residual Learning for Image Recognition. ResNet-50 consists of 50 deep layers. ResNet-50 architectural model in Fig. 6.

Both VGG-16 and ResNet-50 images were obtained from a paper describing brain tumor classification using MRI images by Srinivas et. al[15].

2) *Optimizer Adam, RMSProp, SGD*

Deep learning is part of machine learning that is commonly used for various tasks, one of which is image classification. Deep learning will train the dataset using activation functions, hidden layers, loss functions, input, output, etc.

Modification of NN attributes such as weight and learning rate needs to be done so that the accuracy results can increase. The accuracy can be improved by using the optimizer algorithm. There are many kinds of optimizers. Three of them are SGD, Adam, and RMSProp

a) *Stochastic gradient descent (SGD)*

SGD is an optimization algorithm that is a variant of gradient descent. The way it works is iteratively reduces a loss function by moving in the direction opposite to that of the steepest ascent.

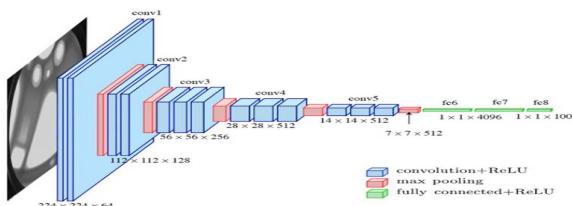


Fig. 5. VGG-16 architecture

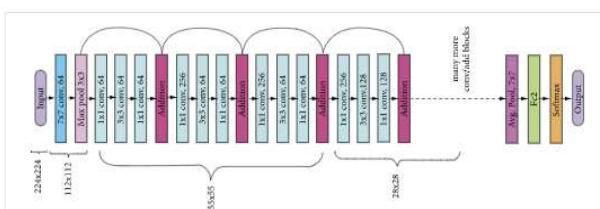


Fig. 6. ResNet-50 architecture

b) *Adam*

Adam is actually a combination of the SGD optimizer and RMSprop. The way it works is that the learning rate for each weight will be adjusted according to the estimates of the first and second gradients. Therefore the term is called "adaptive moment estimation" or abbreviated as Adam.

c) *Root Mean Square Propagation (RMSProp)*

Basically RMSprop is a refinement of AdaGrad. although not published, but this optimizer is one of the most popular and well-known. RMSprop does not use the learning rate as a hyperparameter, but the learning rate used is adaptive where the learning rate changes over time..

3) *Scenario of comparison*

The comparison scenarios in this study are:

- Using VGG-16 with the Adam optimizer uses two different learning rates
- Using VGG-16 with three different optimizers
- Using ResNet-50 with three different optimizers
- Comparing the results of VGG-16 and ResNet-50 with three different optimizers
- Comparing the results of VGG-16 using the Adam optimizer and several different batch sizes.

E. *Assessment*

Prediction results from classification algorithms need to be measured whether the results obtained are good or not. How many predictions were correct and how many turned out to be wrong. In this study, measurements were made using performance metrics. In performance metrics, there are several terms known as a confusion matrix, precision, recall, and F1 Score. The confusion matrix is a 2x2 matrix that contains the actual and predicted values as shown in Fig. 7.

From the confusion matrix, several formulas can be derived, including:

- a. Accuracy:

$$\frac{TP + TN}{TP + TN + FP + FN}$$

- b. Sensitivity:

$$\frac{TP}{TP + FN}$$

- c. Specificity

$$\frac{TN}{TN + FP}$$

- d. Precision

$$\frac{TP}{TP + FP}$$

- e. F1 score

$$2x \frac{recall \times precision}{recall + precision}$$

		ACTUAL	
		Negative	Positive
PREDICTION	Negative	TRUE NEGATIVE	FALSE NEGATIVE
	Positive	FALSE POSITIVE	TRUE POSITIVE

Fig. 7. Confusion Matrix

Where TP stands for True Positive, TN is True Negative, FP is False Positive and FN is False Negative.

III. RESULT AND DISCUSSION

After preprocessing by cropping and resizing the images, then dividing the data into training, validation and testing, the main process is to create a CNN model using Pre-trained VGG-16 and ResNet-50. The experiment result discussed below:

First, a comparison is made using Pre-Trained VGG-16 with batch size 32, epoch 20, and the Adam optimizer with two different learning rates, 0.0001 and 0.001. From Fig. 8, the resulting accuracy is higher when using a learning rate of 0.001.

The second test was carried out using Pre-Trained Model VGG-16 with batch size 8, epoch 10, and three different optimizers, SGD, Adam, and RMSProp parameters. All use the same learning rate of 0.0001. The experimental results can be seen in Fig. 9.

The best accuracy value is generated by using the Adam optimizer. This is not to say that Adam's optimizer is always better than the other two. It could be that when using a different learning rate, another optimizer is better. Need more experiments to find out.

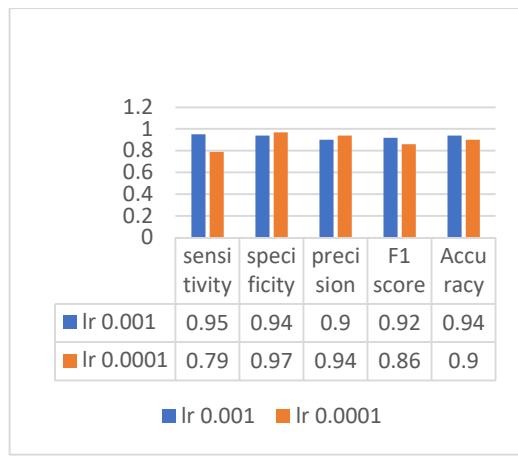


Figure 8. VGG-16 using Adam optimizer with different learning rate

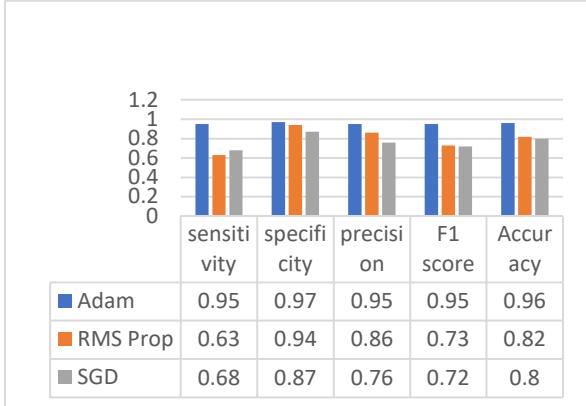


Figure 9. VGG-16 using different optimizers

The third experiment was carried out using the pre-trained ResNet-50 model with batch size 8, epoch 10. This experiment used three different optimizers and the learning rate was the same, 0.0001.

The experimental results can be seen in Fig. 10. The best accuracy is obtained from the RMSProp optimizer, which is 0.94 which turns out to be different from the previous study in Fig. 9, where VGG-16 obtained the best results when using the Adam optimizer.

When the results of the second and third experiments are compared, in Fig. 11, as previously explained, the best accuracy results are obtained by VGG-16 when using the Adam optimizer of 0.96 and ResNet-50 using RMSProp with an accuracy of 0.94.

The last experiment used the Pre-Trained VGG-16 model by using a combination of different batch sizes and epochs. The optimizer used in this last test uses the Adam optimizer with a learning rate of 0.0001. The test results can be seen in Fig. 12.

By using pre-trained VGG-16, the highest accuracy results when using batch size 8 and epoch 10 are 0.96. while the smallest value of accuracy is obtained when using batch size 32 and epoch 20. When Fig. 9 and Fig. 12 are compared, VGG-16 when using the Adam optimizer and a learning rate of 0.0001 the results may differ due to the difference in the selected batch

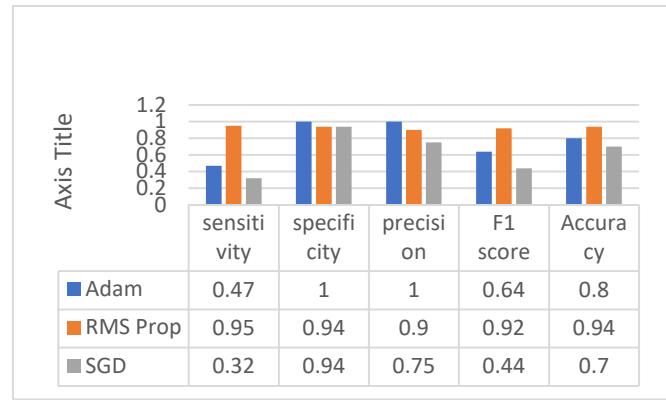


Figure 10. ResNet-50 using different optimizers

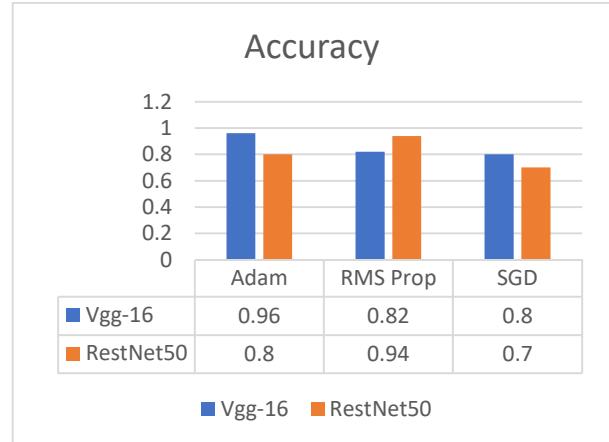


Figure 11. VGG-16 vs ResNet-50 using different optimizers

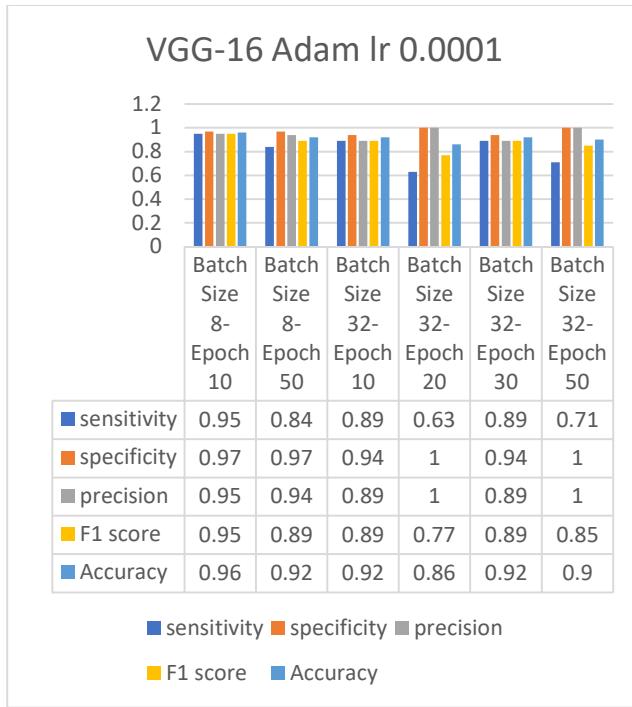


Figure 12. VGG-16 using different batch sizes and epochs

size. in Fig. 9. When using batch size 32, the accuracy is 0.94 while when using batch size 8 in Fig. 12, the accuracy is 0.96.

IV. CONCLUSION AND FUTURE WORK

Brain tumor classification experiments conducted with a small dataset of only 253 images turned out to be completed using the Transfer learning method. The Pre-Trained models used to extract features are VGG-16 and ResNet-50. By using several different parameters such as different batch sizes, optimizer, and learning speed, the result is that VGG-16 gets the best accuracy of 0.96 using the Adam optimizer and ResNet-50 gets the best accuracy of 0.94 using the RMSprop optimizer.

From the many comparison experiments carried out, there is a strong relationship between parameter selection and the accuracy of results obtained. Choosing the right batch size, epoch, optimizer, and learning rate will produce good accuracy results. On the other hand, if the selected parameters do not fit, the results are not very good.

For future research, it is necessary to do research on how to select hyperparameters automatically for transfer learning because searching is expensive and takes time and effort.

REFERENCES

- [1] [S. Gull, S. Akbar, and H. U. Khan, “Automated Detection of Brain Tumor through Magnetic Resonance Images Using Convolutional Neural Network,” *Biomed Res. Int.*, vol. 2021.
- [2] [2] K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, “A survey of transfer learning,” *J. Big Data*, vol. 3, no. 1, pp. 1–40, Dec. 2016.
- [3] [3] R. Mehrotra, M. A. Ansari, R. Agrawal, and R. S. Anand, “A Transfer Learning approach for AI-based classification of brain tumors,” *Mach. Learn. with Appl.*, vol. 2, p. 100003, Dec. 2020.
- [4] [4] Z. N. K. Swati *et al.*, “Brain tumor classification for MR images using transfer learning and fine-tuning,” *Comput. Med. Imaging Graph.*, vol. 75, pp. 34–46, Jul. 2019.
- [5] [5] S. Deepak and P. M. Ameer, “Brain tumor classification using deep CNN features via transfer learning,” *Comput. Biol. Med.*, vol. 111, Aug. 2019.
- [6] [6] B. Cui, M. Xie, and C. Wang, “A Deep Convolutional Neural Network Learning Transfer to SVM-Based Segmentation Method for Brain Tumor,” *2019 IEEE 11th Int. Conf. Adv. Infocomm Technol. ICAIT 2019*, pp. 1–5, Oct. 2019.
- [7] [7] J. Amin, M. Sharif, M. Yasmin, T. Saba, M. A. Anjum, and S. L. Fernandes, “A New Approach for Brain Tumor Segmentation and Classification Based on Score Level Fusion Using Transfer Learning,” *J. Med. Syst.* 2019 4311, vol. 43, no. 11, pp. 1–16, Oct. 2019.
- [8] [8] S. M. Kulkarni and G. Sundari, “A Framework for Brain Tumor Segmentation and Classification using Deep Learning Algorithm,” *Int. J. Adv. Comput. Sci. Appl.*, vol. 11, no. 8, pp. 374–382, 2020.
- [9] [9] A. Raza *et al.*, “A Hybrid Deep Learning-Based Approach for Brain Tumor Classification,” *Electron. 2022, Vol. 11, Page 1146*, vol. 11, no. 7, p. 1146, Apr. 2022.
- [10] [10] T. Banzato, M. Bernardini, G. B. Cherubini, and A. Zotti, “A methodological approach for deep learning to distinguish between meningiomas and gliomas on canine MR-images,” *BMC Vet. Res.*, vol. 14, no. 1, pp. 1–6, Oct. 2018.
- [11] [11] A. Rehman, S. Naz, M. I. Razzak, F. Akram, and M. Imran, “A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning,” *Circuits, Syst. Signal Process.* 2019 392, vol. 39, no. 2, pp. 757–775, Sep. 2019.
- [12] [12] S. Divya, L. Padma Suresh, and A. John, “A Deep Transfer Learning framework for Multi Class Brain Tumor Classification using MRI,” *Proc. - IEEE 2020 2nd Int. Conf. Adv. Comput. Commun. Control Networking, ICACCCN 2020*, pp. 283–290, Dec. 2020.
- [13] [13] M. M. Zahoor *et al.*, “A New Deep Hybrid Boosted and Ensemble Learning-Based Brain Tumor Analysis Using MRI,” *Sensors 2022, Vol. 22, Page 2726*, vol. 22, no. 7, p. 2726, Apr. 2022.
- [14] [14] “Brain MRI Images for Brain Tumor Detection | Kaggle.” <https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection> (accessed Jun. 23, 2022).
- [15] [15] C. Srinivas *et al.*, “Deep Transfer Learning Approaches in Performance Analysis of Brain Tumor Classification Using MRI Images,” *J. Healthc. Eng.*, vol. 2022, 2022.