

CERTIFICATE OF PARTICIPATION

Author Paper Number: 1570716461

Yuni Yamasari

Clustering the Students' Behavior on the e-Learning using the Density-based **Algorithm**

International Seminar on Application for Technology of Information and Communication (iSemantic 2021)

Testimony signature is below the days of September 18 to 19, A021, Semarang Indonesia

Dr. Pulung Nustantio Andono, S.T., M.Kom Conference Chairperson

IEEE Industrial Electronics Society

ISBN 978-1-6654-2804-0

IT OPPORTUNITIES AND CREATIVITIES FOR DIGITAL INNOVATION AND COMMUNICATION WITHIN GLOBAL PANDEMIC

18–19 September 2021

Universitas Dian Nuswantoro Semarang

2021 Int

PROCEEDINGS

2021 International Seminar on Application for Technology of Information and Communication

(iSemantic)

IT Opportunities and Creativities for Digital Innovation and Communication within Global Pandemic

September 18th – 19th, 2021 Universitas Dian Nuswantoro Semarang, Indonesia

ISBN: 978-1-6654-2804-0 IEEE Catalog Number: CFP21CUE-ART

COPYRIGHT

2021 International Seminar on Application for Technology of Information and Communication (iSemantic)

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2021 by IEEE.

ISBN: 978-1-6654-2804-0 IEEE Catalog Number: CFP21CUE-ART

Table of Content				
Paper ID	Title	Page		
1570706948	Indonesian Traditional Shadow Puppet Classification using Convolutional Neural Network			
1570708107	The Effect of Visual Reward and Punishment in Mobile Game on Game Experience 6			
1570708324	Simplification of Mycobacterium Tuberculosis Segmenting Algorithm in Sputum Images Based of Auto-Thresholding	12 - 16		
1570713437	Enhancing dynamic source routing (DSR) protocol performance based on link quality metrics	17 - 21		
1570716461	Clustering the Students' Behavior on the e-Learning using the Density- based Algorithm	22 - 27		
1570719546	Implementation of Feature Selection Using Gain Ratio Towards Improved Accuracy of Support Vector Machine (SVM) on Youtube Comment Classification	28 - 31		
1570719563	Improvement with Chi Square Selection Feature using Supervised Machine Learning Approach on Covid-19 Data	32 - 36		
1570719623	Using Extra Weight in Machine Learning Algorithms for Clickbait Detection of Indonesia Online News Headlines			
1570719626	Increasing Accuracy of Support Vector Machine (SVM) By Applying N- Gram and Chi-Square Feature Selection for Text Classification			
1570720664	1570720664 Design and Implementation Internet of Medical Things for Heart Rate Monitoring System using Arduino and GSM Network			
1570721495	Linear Regression Analysis and SVR in Predicting Motor Vehicle Theft	54 - 58		
1570724042	1570724042 Undergraduate Thesis System Information Service Evaluation Using UTAUT - 5 Factors Based Chatbot			
1570724082	570724082 Anomaly Detection in Wireless Body Area Network using Mahalanobis Distance and Sequential Minimal Optimize Regression			
1570724094	Detection of Malaria Parasites using Color Thresholding in RGB, YCbCr and Lab Color Spaces			
1570727659	570727659 Developing Question Answering System Based on Ontology in Indonesian Traditional Medicine Plants			
1570727939	Attribute Selection Analysis for the Random Forest Classification in Unbalanced Diabetes Dataset			
1570728002	570728002 Relevance Classification of Trending Topic and Twitter Content Using Support Vector Machine			
1570728711	Classification of Ziziphus mauritiana Leaves According to the Texture and Shape of the GLCM Feature Using the Neural Network Backpropagation Method			
1570729123	Sentiment Analysis of Pancasila Values in Social Media Life Using the Naive Bayes Algorithm	96 - 101		
1570730207	Text Encryption using Bi-Arnold Cat Map and Modulus Operation	102 - 106		
1570731058	31058 Score Prediction For Game Aksara Using Fuzzy Mamdani 107			

xv

Paper ID	Title		
1570731437	A Combination of Statistical Extraction and Texture Features Based on KNN for Batik Classification		
1570732164	Javanese Script Recognition based on Metric, Eccentricity and Local Binary Pattern		
1570732357	Business premises capacity manager for covid compliance using Android applications with geolocation services	122 - 127	
1570709822	Export Eligible Fish Length Sorting System Based on Digital Image Object Interpolation	128 - 131	
1570716892	Impact of Solar and Wind Farm Disturbance to the Stability of the Distribution Network	132 - 136	
1570721363	Review of Spectrum Handoff Schemes in Cognitive Radio Networks	137 - 143	
1570721555	Recent Technology and Challenge in ECG Data Acquisition Design: A Review	144 - 150	
1570721560	Low Cost ECG Monitoring Machine Based on Computer Using Serial Communication RS232	151 - 155	
1570721570	Oxigen Concentration Detector in the Continuous Positive Airway Pressure for Sleep Apnea Therapy Based on IoT Technology	156 - 160	
1570721575	Embedded Web Server of Uroflow Meter Based on IoT Technology		
1570731315	Performance Analysis of Parallel PV Modules Using an MPPT Charge Controller		
1570733859	Comparative Analysis on Educational Data Mining Algorithm to Predict Academic Performance		
1570734191	91 Evaluation of Feature Selection Using Wrapper For Numeric Dataset With Random Forest Algorithm		
1570734435	4435 Linear Discriminant Analysis for Apples Fruit Variety Based on Color Feature Extraction		
1570734457	 457 Classification of Multi-Criteria Group Decision Making in Dynamic Environments for Resolving Corruption Cases 		
1570735486	35486 Comparison Of Classification Method On Lombok Songket Woven Fabric Based On Histogram Feature		
1570735798	Lower Body Detection and Tracking with AlphaPose and Kalman Filters		
1570735971	A New Method of Center of Gravity using a Spatial Perspective		
1570736018	The Post-Covid-19 Pandemic Education Model Is Effective, Let's Compare: Online Versus Offline Learning		
1570736193	 Attendance System based on Face Recognition, Face Mask and Body Temperature Detection on Raspberry Pi 		
1570736223	 Glaucoma Detection Through Fundus Images Using Radial Basis Function With Color And GLCM Feature Extraction 		
1570736259	Early Determination of Diabetes Mellitus Disease Prediction with Decision Tree Boosting		
1570736760	Analyze Corporate Anti-Corruption Disclosure with Feature Selection		
1570736765	Protocol-based Testing for Unmanned Gasoline Level Monitoring System	238 - 242	

IT Opportunities and Creativities for Digital Innovation and Communication within Global Pandemic

xvi

Paper ID	Title		
1570737768	Patient Diagnosis Classification based on Electronic Medical Record using Text Mining and Support Vector Machine		
1570737955	Watershed Segmentation and Extended-maxima Transformation based on Minima Imposition for Overlapped Object		
1570720665	Collaborative System Implementation for Tourism: A Systematic Literature Review	255 - 262	
1570729468	Technology Acceptance Model for Adopting E-Accounting Information System Based on Open Source for SMEs	263 - 267	
1570734704	Prediction of Consumer Purchase Intention on Green Product	268 - 272	
1570732223	Digital Transformation in Healthcare: Are patients ready to adopt eHealth in Primary Health Care	273 - 279	
1570733138	Towards Healthcare Data Sharing: An e-Health Integration Effort in Indonesian District	280 - 284	
1570735992	Non Invasive Blood Sugar Detection Using The Extraction Method Of Principal Component Analysis	285 - 289	
1570736201	analysis of electrocardiogram signal and ammonia concentration for clustering ASD condition	290 - 295	
1570737220	Machine Learnings of Dental Caries Images based on Hu Moment Invariants Features		
1570732717	Classification Types of Wood Furnitures Using Gray Level Co- Occurrence Matrix and K-Nearest Neighbor	300 - 306	
1570732791	Classification Using Backpropagation Neural Network on Tweet Emotion Intensity		
1570732811	Hybrid Method Based on Stacking for Sentiment Analysis of Indonesian Tweet Responding to COVID-19 Pandemic		
1570732890	Classification of Lung Diseases Based on Rontgen Images Using Support Vector Machine and Gray Level Co-Occurrence Matrix		
1570732924	 Comparative Performance Study of ESP-NOW, Wi-Fi, Bluetooth 732924 Protocols based on Range, Transmission Speed, Latency, Energy Usage and Barrier Resistance 		
1570732976	 Threshold Value Optimization to Improve Fire Performance Classification Using HOG and SVM 		
1570733068	Classification of Citrus Type Based on Leaf Image Using Shape Extraction and GLCM with the Decision Tree Method		
1570733076	Dimensional Reduction with PCA for Feature Selection in Pedestrian Detection		
1570732987	P2P For Prototype embedded system information on agriculture result using IoT		
1570733058	A Design of Automatic Photovoltaic Pollutant Mitigation Device Based on Fuzzy Logic Controller		
1570733063	Standalone Wind Turbine Power Stability Based on Battery and Supercapacitor Hybrid System		
1570733064	Photovoltaic Sudden Cloud Compensation Device Using Modified LCL Filter Converter Configuration	365 - 369	

IT Opportunities and Creativities for Digital Innovation and Communication within Global Pandemic

xvii

Paper ID	Title	
1570736277	RGB Channel Analysis for Glomerulus and Proximal Tubule Detection in Kidney Histology Image	370 - 375
1570737053	Design and Implementation of One-Leg and PI Control Single-Phase H- Bridge Current Regulated Inverter	376 - 382
1570737054	Limiting Switching in Hysteresis Control Strategy of Single Phase Full Bridge Current Regulated Inverter	
1570737314	Modified Combined LEACH and PEGASIS Routing Protocol for Energy Efficiency in IoT Network	
1570732275	0732275 Employees' Perception toward the Implementation of E-Learning Culture Training Program	
1570732957	732957 Examining Students' Preferences of Quizizz and Kahoot's as Formative Assessment and Competitiveness	
1570732977	Teachers' Challenges and Needs in E-Learning Environment	405 - 409
1570733034	Students' (un)Readiness in Facing Virtual Learning Technological Challenges	
1570733674	Empathy and Connection: Studying Multicultural Literature in Virtual Classrooms	416 - 420
1570736746	Cosmopolitan Pedagogical Paradigm for Digital Native	421 - 425

Clustering the Students' Behavior on the e-Learning using the Density-based Algorithm

Yuni Yamasari Department of Informatics Universitas Negeri Surabaya Surabaya, Indonesia yuniyamasari@unesa.ac.id

Wiyli Yustanti Department of Informatics Universitas Negeri Surabaya Surabaya, Indonesia wiyliyustanti@unesa.ac.id Anita Qoiriah Department of Informatics Universitas Negeri Surabaya Surabaya, Indonesia anitaqoiriah@unesa.ac.id

Atik Wintarti Department of Mathematics Universitas Negeri Surabaya Surabaya, Indonesia atikwintarti@unesa.ac.id Naim Rochmawati Department of Informatics Universitas Negeri Surabaya Surabaya, Indonesia naimrochmawati@unesa.ac.id

Tohari Ahmad Department of Informatics Institut Teknologi Sepuluh Nopember Surabaya, Indonesia tohari@if.its.ac.id

Abstract— The corona pandemic has changed the learning method from conventional to a more flexible one, such as through the internet. Consequently, students may have less direct interaction with teachers. This condition has made it difficult for teachers to monitor the students' behavior. This research works on this problem by focussing on the clustering of students' behavior using the DBSCAN, which is a densitybased algorithm. Noises generated in this process can be considered students who do the uncommon behavior when taking the e-Learning system. Further, we evaluate the resulted clusters using the silhouette index to find their quality. The experimental result shows that the DBSCAN can differentiate clusters containing noises. By taking the silhouette index, the Manhattan distance parameter is superior to that of Euclidean.

Keywords—student, behavior, data mining, e-learning, DBSCAN, silhouette

I. INTRODUCTION

Nowadays, the implementation of advanced Information and Communication Technology (ICT) in education is crucial. Primarily, it happens in this corona pandemic condition. Many processes have changed their business to the online-based business, including that in the education environment. This virtual process brings consequences, like increasing daily traffic data, which requires extracting specific data.

Data mining can be used in an educational environment to obtain important information from these data [1], for example, student data. In many cases, the exploration is done to generate information that relates to students' characteristics, for example, their performance [2][3][4][5][6], attitude [7][8], and achievement[9][10].

Some previous research focuses on the students' behavior domain to analyze the patterns of doing quiz[11], the competition-driven educational game [12][13], online learning [14], student potential [15]. This student behavior has inspired us to explore further research, specifically in the domain where the interaction between teachers and students is not intensive. Our research works on a clustering task using one of the density methods, called DBSCAN, on the students' behavior domain. Here, we propose a method to detect the uncommon students' behavior based on this density algorithm in their interaction with the e-learning system. It is needed to support teachers in monitoring online learning. Clustering is one of the tasks in data mining, mapping a set of data points, so that similar data points are grouped. Therefore, clustering algorithms search similarities or dissimilarities among data points. Clustering is an unsupervised learning technique; therefore, there is an unlabeled instance associated with data points. The algorithm finds the underlying structure of data.

This paper is arranged in following sections. The first is the introduction, which is followed by the proposed method. The experimental result is provided in the subsequent section. Finally, we conclude the research in Section 4.

Fig. 1. The flow of the proposed method

No.	Feature	Data type	Description
1	DownloadIndFar	Numeric	The number of students' activity relating to downloading the material of faraday's law of induction
2	DownloadMedMag	Numeric	The number of students' activity relating to downloading the material of magnet field
3	ForumIndFar	Numeric	The number of students' activity when they join the forum relating to the material of Faraday's law of induction
4	ForumMedMag	Numeric	The number of students' activity when they join the forum relating to the material of the magnet field
5	FailLogin	Numeric	The number of students' activity relating to success or failure in the login process
6	LearnVideo1	Numeric	The number of students' activity relating to learning material using video1
7	LearnVideo2	Numeric	The number of students' activity relating to learning material using video2
8	LearnVideo3	Numeric	The number of students' activity relating to learning material using video3
9	LearnVideo4	Numeric	The number of students' activity relating to learning material using video4
10	LearnVideo5	Numeric	The number of students' activity relating to learning material using video5
11	LearnVideo6	Numeric	The number of students' activity relating to learning material using video6
12	LearnVideo7	Numeric	The number of students' activity relating to learning material using video7
13	LearnVideo8	Numeric	The number of students' activity relating to learning material using video8
14	LearnVideo9	Numeric	The number of students' activity relating to learning material using video9
15	LearnVideo10	Numeric	The number of students' activity relating to learning material using video10
16	LearnVideo11	Numeric	The number of students' activity relating to learning material using video11
17	LearnVideo12	Numeric	The number of students' activity relating to learning material using video12
18	LearnVideo13	Numeric	The number of students' activity relating to learning material using video13
19	LearnVideo14	Numeric	The number of students' activity relating to learning material using video14
20	LearnVideo15	Numeric	The number of students' activity relating to learning material using video15
21	LearnVideo16	Numeric	The number of students' activity relating to learning material using video16
22	LearnVideo16	Numeric	The number of students' activity relating to learning material using video17
23	LearnVideo18	Numeric	The number of students' activity relating to learning material using video18
24	SuccessLogin	Numeric	The number of students' activities relating to login with status success
25	Logout	Numeric	The number of students' activities relating to the process of leaving students from the e- learning system.
26	Examination	Numeric	The number of students' activity in doing the examination
27	ExercIndFar	Numeric	The number of students' activity in doing the exercises for Faraday's law induction
28	ExcerMedMag	Numeric	The number of students' activity in doing the exercises for magnetic field
29	Sum	Numeric	The amount of the student operation after logging in until they log out of e-learning;
30	Average	Numeric	The number of students' activities after logging in before they log out of e-learning is separated by the number of activities.

TABLE I. STUDENT DATA

II. METHOD

The process of the proposed method is provided in this section, whose stages are depicted in Fig. 1. The detail steps can be explained as follows.

Step 1: Student data

Student data are obtained from students' activities in the e-Learning system. We extract them to generate the student data consisting of various features. In this research, we use all of them for the next process.

Step 2: Clustering the student data

Fig. 1. In the clustering process, the DBSCAN is applied by exploring the data density. The method is a clustering method building an area based on density-connected. Every object of an area radius has to contain at least the number of minimum data. All objects that are not included in the cluster are considered as noise. Some parameters are specified: core point neighbors, neighborhood distance, and distance parametric, either Euclidean or Manhattan. The computation of the Density-Based Spatial Clustering of Application with Noise (DBSCAN) Algorithm is as follows:

- 1. Initialize parameters minpts, eps.
- 2. Determine the starting point or p at random.
- 3. Repeat steps 3-5 until all points are processed.

4. Calculate eps or all density reachable point distances with respect to p.

5. If the point that meets the eps is more than minpts then the point p is the corepoint and a cluster is formed.

No.	Core point	Neighborhood	Cluster 0	Cluster I
	neighbors	distance		
1	5	9.8	12	115
2	6	9.82	12	115
3	7	9.92	12	115
4	8	9.99	12	115
5	9	10	12	115
6	10	10.08	12	115
7	11	10.14	12	115
8	12	10.22	12	115
9	13	10.22	12	115
10	14	10.22	12	115
11	15	10.39	12	115
12	16	10.52	12	115
13	17	11.03	12	115
14	18	11.03	12	115
15	19	11.03	12	115
16	20	11.03	12	115
17	21	11.03	12	115
18	22	11.07	12	115
19	23	11.08	12	115
20	24	11.08	12	115
21	25	11.08	12	115
22	26	11.13	12	115
23	27	11.13	12	115
24	28	11.16	12	115
25	29	11 18	12	115

TABLE II. THE CLUSTERING USING DBSCAN WITH DISTANCE PARAMETER: EUCLIDEAN

TABLE III. The composition of the cluster member on DBSCAN with the euclidean distance on the $12^{\rm th}\,\rm experiment$

Cluster	Index of the students	The number of students
0	1,6,9,20,40,73,84,85,94,100,126, 127	12
1	2,3,4,5,7,8,10,11,12,13,14,15,16, 17,18,19,21,22,23,24,25,26,27,28 ,29,30,31,32,33,34,35,36,37,38,3 9,41,42,43,44,45,46,47,48,49,50, 51,52,53,54,55,56,57,58,59,60,61 ,62,63,64,65,66,67,68,69,70,71,7 2,74,75,76,77,78,79,80,81,82,83, 86,87,88,89,90,91,92,93,95,96,97 ,98,99,101,102,103,104,105,106, 107,108,109,110,111,112,113,11 4,115,116,117,118,119,120,121,1 22,123,124,125	115

6. If p is a border point and no point is density reachable with respect to p, then the process continues to another point.

Step 3: Visualizing the clustering result

The clustering result of students' behavior is visualized in scatterplot form to make it easy for teachers to monitor the student behavior while using an e-learning system.

Step 4: Measuring the cluster validity

The generated clusters are evaluated to find their validity. One of the metrics for measuring is the silhouette index, whose interval value is from -1 to 1. The fewer instances in a cluster, the higher the validity of the cluster.

No.	Core point	Neighborhood	Cluster	Cluster 1
	neighbors	distance	0	
1	5	22.98	12	115
2	6	23.61	12	115
3	7	23.71	12	115
4	8	24.55	10	117
5	9	24.58	11	116
6	10	24.64	11	116
7	11	25.64	12	115
8	12	24.94	12	115
9	13	24.94	12	115
10	14	25.15	12	115
11	15	25.15	12	115
12	16	25.87	10	117
13	17	25.88	11	116
13	18	25.88	12	115
14	19	25.88	12	115
15	20	25.88	12	115
16	21	25.88	12	115
17	22	25.88	12	115
18	23	25.88	12	115
19	24	25.88	12	115
20	25	25.88	12	115
21	26	26.09	12	115
22	27	26.19	12	115
23	28	26.25	11	116
24	29	26.25	11	116
25	30	26.25	12	115

TABLE IV. THE CLUSTERING USING DBSCAN WITH DISTANCE PARAMETER: MANHATTAN

TABLE V. The composition of the cluster member on DBSCAN with the manhattan distance on the $12^{\rm th}$ experiment

Cluster	Index of the students	The number of students
0	1,9,20,34,73,84,85,94,100,126	10
1	$\begin{array}{c} 2,3,4,5,6,7,8,10,11,12,13,14,15,1\\ 6,17,18,19,21,22,23,24,25,26,27,\\ 28,29,30,31,32,33,35,36,37,38,39\\ 40,41,42,43,44,45,46,47,48,49,5\\ 0,51,52,53,54,55,56,57,58,59,60,\\ 61,62,63,64,65,66,67,68,69,70,71\\ ,72,74,75,76,77,78,79,80,81,82,8\\ 3,86,87,88,89,90,91,92,93,95,96,\\ 97,98,99,101,102,103,104,105,10\\ 6,107,108,109,110,111,112,113,1\\ 14,115,116,117,118,119,120,121,\\ 122,123,124,125\end{array}$	117

III. RESULT

In this section, the experimental result of the proposed method is described. It consists of three parts: data description, the implementation results of density-based algorithm-DBSCAN, and the result's visualization.

A. Data description

The mined student data are collected from the two vocational high schools. In this case, 127 students interact with an e-learning system, and their behavior is recorded. These data, which comprise 30 features having numeric data types, are explored. The detail of the collected data is provided in Table I.

B. The execution result of the DBSCAN Algorithm

Before the execution of this algorithm is done, two parameters need to be specified: core point neighbors (corepoint) and neighborhood distance. The first parameter relates to the minimum number of point neighbors (minpts) required to create a dense region. The second parameter is the radius of a neighborhood concerning some points. Here, we explore two distance measurements, namely: Euclidean and Manhattan.

This method runs 25 times on each distance parameter with various scenarios. Therefore, the experimental results are represented in two parts. The first is that with Euclidean and Manhattan. The second is that with different compositions of the cluster members on DBSCAN comprising Euclidean and Manhattan distances.

 $\begin{array}{c} 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.4\\ 0.3\\ 0.2\\ 0.1\\ 0\\ 0\\ 1\\ 2\\ 3\\ 0\\ 0\\ 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ \hline DownloadMedMag \end{array}$

(a)

Fig. 3. The visualization is based on the Manhattan distance parameter. (a). the clustering result. (b). the cluster validity

In the first experiment of DBSCAN with Euclidean distance, we specify the core point neighbors as the number ranging between 5 and 29. For the second parameter, which is neighborhood distance, we explore the distance whose value is between 9.8 and 11.18. The clustering results using DBSCAN with the same student number in each cluster on all scenarios are depicted in Table II. The student number in clusters 0 and 1 are 12 and 115, respectively. Further, we show in Table III an example of different compositions of the cluster member in each cluster. This is the 12th experimental result. Cluster 0 indicates that object included as noise instance. In the research, the noise instances mean that students have significantly different behavior from the general students, for example, students access the e-learning during the extreme time. For Cluster 1, the member of this cluster is students interacting the system reasonably.

Fig. 2. The visualization is based on the Euclidean distance parameter. (a). the clustering result. (b). the cluster validity

Secondly, we determine two parameters: the core point neighbors and the neighborhood distance on the experiment of DBSCAN with Manhattan distance as follows: the first parameter with value 5-30.

In the neighborhood distance, we explore the distance whose value is from 22.5 to 26.5. The experimental results are shown in Tables IV and V. In Table IV, the result exhibits the fluctuation of student numbers in each cluster in all scenarios. Overall, the frequent student number in clusters 0 and 1 are 12 and 115, respectively. Next, in Table V, we present the cluster member's composition of the 12th experiment in each cluster.

The result presents that there are 12 students in cluster 0. which indicates that the students have uncommon behavior when they interact with the system. On contrary, there 115 students on Cluster 1 do similar behaviors or common behaviors.

C. The visualization of clustering result and cluster validity

In this sub-section, the visualization of the clustering result is presented. The visualization covers the mapping of students' behavior on the e-learning in a scatterplot graph and the silhouette value for every student on all parameters distance. This scatterplot visualizes the students' behavior mapping on the e-learning with that of the 12th experiment. Respectively, those with Euclidean and Manhattan are shown in Fig. 2(a) and Fig. 3(a). The visualization of student members of cluster 1 is illustrated by the blue circle, while that of cluster 0 is by the grey cross. The students of cluster 0 indicate that they do significantly different behaviors from most of the other student

In this graph, the downloadmedmagnet is the student behavior relating to the behavior downloading the magnetic field material from the e-learning as X-axis; the average is the mean of all behaviors during students interact with the elearning as Y-axis.

To validate the cluster, we compute the silhouette index for all students. Then, we visualize it in the graph as depicted respectively in Fig. 2(b) and Fig. 3(b) for the Euclidean and the Manhattan distances. This index value has ranged from -1 to 1. The less silhouette value, the higher the validity of the cluster. It means that the clustering process has better performance. The experimental result shows that the cluster validity of DBSCAN with the Manhattan distance is better than that with Euclidean distance. It is indicated by the DBSCAN-Manhattan distance having the silhouette index <0 and less than the DBSCAN-Euclidean distance.

A clustering algorithm based on density-DBSCAN can find arbitrary shaped clusters and clusters with noise or outliers that in this paper displayed in a grey cross form. The main idea behind DBSCAN is that a point belongs to a cluster if it is close to the majority points from that cluster. In this paper, a point relates to students' behavior, so we can consider noises or outliers as students doing uncommon behaviors when interacting with the e-learning system.

IV. CONCLUSION

The clustering based on DBSCAN can be applied to the student's behavior on the e-Learning system to detect the students who do the uncommon behavior. This method can work optimally if the values of its parameters are specified with the appropriate values. For our research, DBSCAN reaches the optimal clustering process when its distance parameter uses Manhattan.

In the subsequent research, we would like to rank the noise level. It may be applied by using existing algorithms. Furthermore, appropriate parameters should be defined appropriately and adaptively.

REFERENCES

- A. Peña-Ayala, "Educational data mining: A survey and a data mining-based analysis of recent works," *Expert Syst. Appl.*, vol. 41, no. 4, pp. 1432–1462, Mar. 2014, doi: 10.1016/j.eswa.2013.08.042.
- [2] A. I. Adekitan and O. Salau, "The impact of engineering students' performance in the first three years on their graduation result using educational data mining," *Heliyon*, vol. 5, no. 2, p. e01250, Feb. 2019, doi: 10.1016/j.heliyon.2019.e01250.
- [3] C. Burgos, M. L. Campanario, D. de la Peña, J. A. Lara, D. Lizcano, and M. A. Martínez, "Data mining for modeling students' performance: A tutoring action plan to prevent academic dropout," *Comput. Electr. Eng.*, vol. 66, pp. 541–556, Feb. 2018, doi: 10.1016/J.COMPELECENG.2017.03.005.
- [4] L. M. Crivei, V.-S. Ionescu, and G. Czibula, "An Analysis of Supervised Learning Methods for Predicting Students' Performance in Academic Environments," *ICIC Express Lett.*, vol. 13, no. 3, pp. 181–189, 2019, doi: 10.24507/icicel.13.03.181.
- [5] I. Shingari, D. Kumar, and M. Khetan, "A review of applications of data mining techniques for prediction of students' performance in higher education," *J. Stat. Manag. Syst.*, vol. 20, no. 4, pp. 713–722, Jul. 2017, doi: 10.1080/09720510.2017.1395191.
- [6] R. Asif, A. Merceron, S. A. Ali, and N. G. Haider, "Analyzing undergraduate students' performance using educational data mining," *Comput. Educ.*, vol. 113, pp. 177–194, Oct. 2017, doi: 10.1016/J.COMPEDU.2017.05.007.
- [7] Y. Promdee, S. Kasemvilas, N. Phangsuk, and R. Yodthasarn, "Predicting Persuasive Message for Changing Student's Attitude Using Data Mining," in 2017 International Conference on Platform Technology and Service (PlatCon), Feb. 2017, pp. 1–5, doi: 10.1109/PlatCon.2017.7883721.
- [8] S. E. Sorour, T. Mine, K. Goda, and S. Hirokawa, "Regular Paper A Predictive Model to Evaluate Student Performance," *J. Inf. Process.*, vol. 23, pp. 192–201, 2015, doi: 10.2197/ipsjjip.23.192.
- [9] J. N. Purwaningsih and Y. Suwarno, "Predicting students achievement based on motivation in vocational school using data mining approach," in 2016 4th International Conference on Information and Communication Technology (ICoICT), May 2016, pp. 1–5, doi: 10.1109/ICoICT.2016.7571880.
- [10] N. Buniyamin, U. bin Mat, and P. M. Arshad, "Educational data mining for prediction and classification of engineering students achievement," in 2015 IEEE 7th International Conference on Engineering Education (ICEED), Nov. 2015, pp. 49–53, doi: 10.1109/ICEED.2015.7451491.
- [11] L. Juhaňák, J. Zounek, and L. Rohlíková, "Using process mining to analyze students' quiz-taking behavior patterns in a learning management system," *Comput. Human Behav.*, Dec. 2017, doi: 10.1016/J.CHB.2017.12.015.
- [12] Z.-H. Chen, "Exploring students'behaviors in a competition-driven educational game," *Comput. Human Behav.*, vol. 35, pp. 68–74, 2014, doi: http://dx.doi.org/10.1016/j.chb.2014.02.021.
- [13] M.-T. Cheng, Y.-W. Lin, and H.-C. She, "Learning through playing Virtual Age: Exploring the interactions among student concept learning, gaming performance, in-game behaviors, and the use of ingame characters," *Comput. Educ.*, vol. 86, pp. 18–29, Aug. 2015, doi: 10.1016/J.COMPEDU.2015.03.007.
- [14] Wang Jie, Lv Hai-yan, Cao Biao, and Zhao Yuan, "Application of educational data mining on analysis of students' online learning behavior," in 2017 2nd International Conference on Image, Vision

and Computing (ICIVC), Jun. 2017, pp. 1011–1015, doi: 10.1109/ICIVC.2017.7984707.

[15] F. Yang and F. W. B. Li, "Study on student performance estimation, student progress analysis, and student potential prediction based on data mining," Comput. Educ., vol. 123, pp. 97-108, Aug. 2018, doi: 10.1016/J.COMPEDU.2018.04.006.