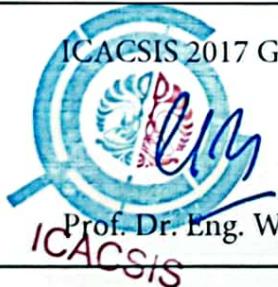


ICACCSIS 2017

2017 International Conference on Advanced Computer Science and
Information Systems

CERTIFICATE OF PRESENTER

Is Awarded To


Yeni Anistyasyari

Dean of Faculty of Computer Science
Universitas Indonesia,

Mirna Adriani, Ph.D.

ICACCSIS 2017 General Chair,

Prof. Dr. Eng. Wisnu Jatmiko
ICACCSIS

FACULTY OF
COMPUTER
SCIENCE

KANTOR
PENGELOLAAN
PRODUK
RISET & INOVASI

IEEE
INDONESIA SECTION

FILKOM

UNESA
Universitas Singaperbangsa

Departemen
Ilmu Komputer

Proceedings

ICACCSIS 2017

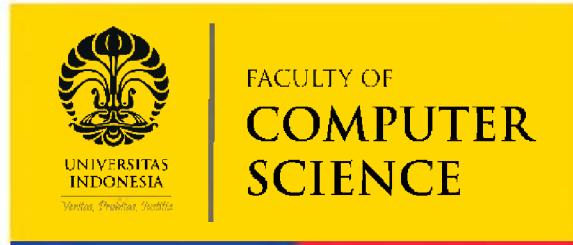
2017 International Conference on Advanced
Computer Science and Information Systems

October 28-29 th, 2017
Jakarta, Indonesia

ISBN : 978-1-5386-3172-0
Part Number : CFP1719R-ART

KANTOR
PENGELOLAAN
PRODUK
RISET & INOVASI

FACULTY OF
**COMPUTER
SCIENCE**



2017 International Conference on
Advanced Computer Science and Information Systems
(ICACSIS)

Mercure Convention Ancol, Jakarta, Indonesia

October 28th-29th , 2017

Organized by:

Co-Host:

Departemen
Ilmu Komputer

Copyright and Reprint Permission:

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org.

All rights reserved. Copyright ©2013 by IEEE.

Welcome Message from General Chairs

On behalf of the Organizing Committee of the 9th International Conference on Advanced Computer Science and Information Systems (ICACCSIS) 2017, the Faculty of Computer Science, Universitas Indonesia, we would like to welcome you all, the esteemed presenters and participants, and in particular, we would also like to give our warmest welcome to our distinguished plenary and invited speakers.

The 9th edition of ICACCSIS in 2017, organized by the Faculty of Computer Science, Universitas Indonesia, is intended to provide a forum in leading the way towards a top-class summit on Computer Science and Information Systems. We strongly believe, after several years managing our conferences, that this year international conference will give more and more opportunities for sharing and exchanging original research ideas and opinions, gaining inspiration for future research, and broadening our understanding in the always developing fields in advanced computer science and information systems. In this year conference, those opportunities are shared amongst members of Indonesian research communities, and also researchers from Australia, USA, the UK, Japan, the Czech Republic, Switzerland, Germany, Portugal and several other countries.

This year conference focuses on the development of computer science and information systems. Along with the 6 invited speakers, the conference will also present 78 papers throughout the many sessions in the 2 days of our conference. Those papers have been selected from a total of 183 papers from 8 different countries (with a rejection rate around 68%). We feel that the process reflects the level of quality being imposed on this year paper review process and we also like to point out that the selection process is becoming more competitive.

We also want to express our sincere appreciation to the members of our Program Committee for their critical and constructive review of the submitted papers, as well as to the Organizing Committee for their time and energy devoted to the process of editing the proceedings and arranging the logistics for this year conference held in Ancol, Jakarta. We would also like to give our sincere appreciation to the many authors whom have submitted their excellent research works to our conference. Last but not least, we would also like to extend our sincere gratitude to the Ministry of Research, Technology and Higher Education of the Republic of Indonesia, our Rector of Universitas Indonesia, our Dean of the Faculty of Computer Science, Institut Pertanian Bogor, Universitas Negeri Surabaya, Universitas Brawijaya for their continued excellent support towards the ICACCSIS 2017 conference. Let us hope that this year's conference will be a success in facilitating further collaboration in the ever-expanding field of computer science and information system for the betterment of our society.

Widijanto Satyo Nugroho
Wisnu Jatmiko

Welcome Message from Dean of Faculty of Computer Science, Universitas Indonesia

On behalf of the Faculty of Computer Science, Universitas Indonesia, I would like to extend our warmest welcome to all the participants to the Mercure Convention Center, Jakarta on the occasion of the 2017 International Conference on Advanced Computer Science and Information Systems (ICACCSIS).

Just like the previous conferences in this series (ICACCSIS 2009 - 2016), I am confident that ICACCSIS 2017 will play an important role in encouraging activities in research and development of computer science and information technology in Indonesia, and give an excellent opportunity to forge collaborations between national and international research institutions. The broad scope of this event, which includes both theoretical aspects of computer science and practical, applied experience of developing information systems, provides a unique meeting ground for researchers spanning the whole spectrum of our discipline. I hope that over the next two days, some fruitful collaborations can be established.

I also hope that the special attention devoted this year conference such as big data, computational intelligence, and internet of things will ignite the development of applications in this area to address the various needs of Indonesia's development.

I would like to express my sincere gratitude to the distinguished invited speakers for their presence and contributions to the conference. I also thank all the program committee members for their efforts in ensuring a rigorous review process to select high quality papers.

Finally, I sincerely hope that all the participants will benefit from the technical contents of this conference, and wish you a very successful conference and an enjoyable stay in Jakarta.

Mirna Adriani

COMMITTEES

Honorary Chairs:

- Jain, Fellow IEEE, Michigan State University, US
- T. Fukuda, Fellow IEEE, Nagoya-Meijo University, JP
- M. Anis, Universitas Indonesia, ID
- M. Adriani, Universitas Indonesia, ID

General Chairs:

- W.S. Nugroho, Universitas Indonesia, ID
- W. Jatmiko, Universitas Indonesia, ID

Program Chairs:

- P.W Handayani, Universitas Indonesia, ID
- E. Rakun , Universitas Indonesia, ID

Section Chairs:

- F.Y. Zulkifli, IEEE Indonesia Section, ID
- S. Dharmanto, IEEE Indonesia Section, ID

Financial Chairs:

- H. R. Sanabila, Universitas Indonesia, ID

Publication Chairs:

- A. Wibisono, Universitas Indonesia, ID

Program Committees:

- A. Azurat, Universitas Indonesia, ID
- A. A. Krisnadhi, Universitas Indonesia, ID
- A. Basuki, Universitas Brawijaya, ID
- A. Kristijantoro, Institut Teknologi Bandung, ID
- A. Murni, Universitas Indonesia, ID
- A. N. Hidayanto, Universitas Indonesia, ID
- A. Purwarianti, Institut Teknologi Bandung, ID
- A. Tiu, Australian National University, AU
- A. Srivihok, Kasetsart University, TH
- A. Z. Arifin, Institut Teknologi Sepuluh Nopember, ID
- B. Anggorojati, Universitas Indonesia, ID.
- B. H. Widjaja, Universitas Indonesia, ID
- B. Hardian, Universitas Indonesia, ID
- B. Purwandari, Universitas Indonesia, ID
- B. Subagdja, Nanyang Technological University, SG
- E. Gaura, Coventry University, UK
- E. K. Budiarjo, Universitas Indonesia, ID
- E. Seo, Sungkyunkwan University, KR
- E. M. Imah, Universitas Negeri Surabaya , ID
- F. Ramdani, Universitas Brawijaya, ID

ADVANCED PROGRAM**ICACCSIS 2017**

- F. Utaminingrum, Universitas Brawijaya, ID
- F. Darari, Universitas Indonesia, ID
- H. Kurniawati, University of Queensland, AU
- H. Suhartanto, Universitas Indonesia, ID
- I. Budi, Universitas Indonesia, ID
- I. Wasito, Universitas Indonesia, ID
- L. Y. Stefanus, Universitas Indonesia, ID
- Marimin, Institut Pertanian Bogor, ID
- M. I. Fanany, Universitas Indonesia, ID
- M. Kyas, Reiykjavik University, IS
- M. Nakajima, Nagoya University, JP
- M. T. Suarez, De La Salle University, PH
- O. Lawanto, Utah State University, US
- P. Hitzler, Wright State University, US
- P. Mursanto, Universitas Indonesia, ID
- R. M. Salleh, Universiti Tun Hussein Onn Malaysia, MY
- S. Bressan, National University of Singapore, SG
- S. Nomura, Nagaoka University of Technology, JP
- S. Sharif, Universiti Utara Malaysia, MY
- S. Yazid, Universitas Indonesia, ID
- T. Gunawan, International Islamic University Malaysia, MY
- T. Hardjono, Massachusetts Institute of Technology, US
- W. C. Wibowo, Universitas Indonesia, ID
- W. F. Mahmudy, Universitas Brawijaya, ID
- W. Prasetya, Universiteit Utrecht, ND
- W. S. Nugroho, Universitas Indonesia, ID
- W. Sediono, International Islamic University Malaysia, MY
- Y. G. Sucahyo, Universitas Indonesia, ID
- X. Li, The University of Queensland, AU
- Y. K. Isal, Universitas Indonesia, ID
- Z.A. Hasibuan, Universitas Indonesia, ID
- Z. Zyada, Universiti Teknologi Malaysia, MY

Local Organizing Committee:

- A. Parastry, Universitas Indonesia, ID
- A.R. Rachmasari, Universitas Indonesia, ID
- D.M Sriarsa, Universitas Indonesia, ID
- G. Jati, Universitas Indonesia, ID
- I.G.W. Suryadharma, Universitas Indonesia, ID
- M. Anwar Ma'sum, Universitas Indonesia, ID
- M. Soleh, Universitas Indonesia, ID
- M. Roby, Universitas Indonesia, ID
- N. Fazriah, Universitas Indonesia, ID
- S. C. Purbarani, Universitas Indonesia, ID
- Z. Anshori, Universitas Indonesia, ID

PROGRAM SCHEDULE

Saturday, October 28th, 2017-CONFERENCE			
Time	Event	Event Details	Rooms
07.30-08.30		Registration	
08.30-08.35		Opening speech from the General Chair of ICACCSIS 2017, (Widijanto S. Nugroho, Ph.D.)	
08.35-08.40	Opening Ceremony	Opening speech from the Dean of Faculty of Computer Science Universitas Indonesia (Mirna Adriani, Ph.D)	Pelangi Room
08.45-08.50		Opening Speech from the Rector Universitas Indonesia (Prof. Muhammad Anis)	
08.50-09.00		ICACCSIS Photo Session	
09.00-09.45		Assoc. Prof. Dr. Taku Komura from University of Edinburgh, UK	
09.45-10.00		Coffee Break	
10.00-11.30	Parallel Session I:	Three Parallel Sessions	Kayangan 1 Room, Putri 2 Room, and Batavia 1 Room
11.30-13.00		Lunch	
13.00-14.30	Parallel Session II:	Three Parallel Sessions	Kayangan 1 Room, Putri 2 Room, and Batavia 1 Room
14.30-14.45		Coffee Break	
14.45-15.30	Plenary Speech II	Prof. Heru Suhartanto from Universitas Indonesia, ID	Pelangi Room
15.30-16.15	Plenary Speech III	Prof. Norimichi Ukita from Toyota Technological Institute, JP	Pelangi Room
16.15-17.45	Parallel Session III:	Three Parallel Sessions	Kayangan 1 Room, Putri 2 Room, and Batavia 1 Room
19.00-21.00		Gala Dinner	Pulau Bidadari Room

ADVANCED PROGRAM

ICACCSIS 2017

Sunday, October 29th, 2017-CONFERENCE			
Time	Event	Event Details	Rooms
07.30-08.00	Registration		
08.00-09.30	Parallel Session IV:	Three Parallel Sessions	Kayangan 1 Room, Putri 2 Room, and Batavia 1 Room
09.30-09.45	Coffee Break		
09.45-10.30	Plenary Speech IV	Jan Pidanic, Ph.D from Univerzita Pardubice, CZ	Pelangi Room
10.30-12.00	Parallel Session V:	Three Parallel Sessions	Kayangan 1 Room, Putri 2 Room, and Batavia 1 Room
12.00-13.00	Lunch		
13.00-14.30	Parallel Session VI:	Three Parallel Sessions	Kayangan 1 Room, Putri 2 Room, and Batavia 1 Room
14.30-14.45	Coffee Break		
14.45-15.30	Plenary Speech V	Assoc.Prof. David Taniar from Monash University, AU	Pelangi Room
15.30-16.15	Plenary Speech VI	Prof. Xue Li from Queensland University, AU	Pelangi Room
16.15-16.30	Closing Ceremony (Awards Announcement and Photo Session)	Awards Announcement from the General Chair of ICACCSIS 2017, (Prof. Wisnu Jatmiko)	Pelangi Room

Table of Contents

Welcome Message from General Chairs	i
Welcome Message from Dean of Faculty of Computer Science University of Indonesia Committee	ii
Program At Glance	iii
Table of Content	v
Invited Speakers	vii

Big Data Is All About Data That We Don't Have <i>David Taniar</i>	1 - 8
Human Pose Estimation using Motion Priors and Ensemble Models <i>Norimichi Ukita</i>	9 - 14
The Analysis of Wind Farm Impact in Primary Radar System <i>Jan Pidanic, Karel Juryca, Heru Suhartanto</i>	15 - 20

Computer Networks, Architecture, and High-Performance Computing

Past, Present, and Future Trend of GPU Computing in Deep Learning on Medical Images <i>Toto Haryanto</i>	21 - 28
Perform evaluation of IoT middleware for syntactical Interoperability <i>Eko Sakti Pramukantoro, Widhi Yahya, Fariz Andri Bakhtiar</i>	29 - 34
Hexapod Leg Coordination using Simple Geometrical Tripod-Gait and Inverse Kinematics Approach <i>Karlisa Priandana, Agus Buono, Wulandari</i>	35 - 40
The Wind Farm Simulator of Reflected Signals in Primary Radar System <i>Jan Pidanic, Karel Juryca, Heru Suhartanto</i>	41 - 46
The Modelling of Wind Turbine Influencce in the Primary Radar Systems <i>Jan Pidanic, Karel Juryca, Heru Suhartanto</i>	47 - 52

Digital Library and Distance Learning

Analysis of Factors Affecting Users Continuance Intention of e-Resources at The University of Indonesia Library: IEEE Xplore Digital Library case study <i>Wiwit Ratnasari, Dana Indra Sensuse</i>	
---	--

Completing Cultural Heritage Information through Selective Crowdsourcing <i>Alex C. Olivieri, Shaban Shabani, Zhan Liu , Maria Sokhn</i>	55 - 62
Improving e-Learning through Knowledge Management <i>Dana Indra Sensusea, Pudy Prima, Muhammad Mishbaha, Pristi Sukmasetyaa</i>	55 - 60
E-Government and E-Business	61 - 67
Influencing Factors of Consumer Purchase Intention Based on Social Commerce Paradigm <i>M. Octaviano Pratama, Ruci Meiyanti, Handrie Noprisson, Arief Ramadhan, Achmad Nizar Hidayanto</i>	73 - 80
Analysing the Critical Factors Influencing Consumers' E-Impulse Buying Behavior <i>Made Ayu Aristyana Dewi, Isnaeni Nurrohmah, Nitto Sahadi, Dana Indra Sensuse, Handrie Noprisson</i>	81 - 92
An empirical examination of factors affecting the behavioral intention to use online transportation service: Case study of GRAB <i>Rizky Septiani, Putu Wuri Handayani, Fatimah Azzahro</i>	93 - 98
Smart Government Assessment Using Scottish Smart City Maturity Model: A Case Study of Depok City <i>Muhammad Akmal JUNIawan, Puspa Sandhyaduhita, Betty Purwandari, Satrio Baskoro Yudhoatmojo, Made Ayu Aristyana Dewi</i>	99 - 104
General Papers	
Forest Change Analysis using OBIA approach and Supervised Classification, A case study : Kolaka District, South East Sulawesi <i>Rinda Wahyuni</i>	105 - 110
Constructing Transitive Closure on Multigraph with Adjacency Hyperedges Matrix <i>Heru Suhartanto</i>	111 - 120
Geometric Time Variant Particle Swarm Optimization With Fuzzy AHP For Pomology Plant Recommendation <i>Maulana Putra Pambudi, Imam Cholissodin, Candra Dewi</i>	121 - 126
Analysis of Online Testing As An Alternative Evaluation Tools in Higher Education (Case Study In Malang, Indonesia) <i>Faizatul Amalia, Admaja Dwi Herlambang</i>	127 - 130
ABS Microservices and Ontology-Zotonic Integration for SPL Implementation in Information System <i>Andri Kurniawan, Iis Afriyanti, Ade Azurat</i>	131 - 136

Implementation of An Ant Colony Approach to Solve Multi-Objective Order Picking Problem in Beverage Warehousing with Drive-in Rack System

Taufik Djatna, M Zaky Hadi

137 - 142

Information Management

Knowledge Sharing Motivation in E-Commerce Online Community

Septiani Andriane Sinaga, Putu Wuri Handayani, Ave Adriana Pinem

143 - 148

Analysing the Critical Factors Influencing Consumers' Knowledge Sharing Intention in Online Communities and Its impact on Consumer Product Involvement, Product Knowledge and Purchase Intention

Made Ayu Aristyana Dewi, Nadia Nur Annisa, Pamela Kareen, Anissa Edwita, Dana Indra Sensuse

149 - 158

Investigating Mobile Payment Acceptance Using TechnologicalPersonal-Environmental (TPE) Framework: A Case of Indonesia

Khalila Hunafa, A. Nizar Hidayanto, Puspa Sandhyaduhita

159 - 164

Factors Influencing Citizen's Intention to Participate Electronically: The Perspectives of Social Cognitive Theory and E-Government Service Quality

Khoirunnida, A. Nizar Hidayanto, Betty Purwandari, Dona Kartika, Meidi Kosandi

165 - 170

Latent Variable Reconstruction in Determining Student's Single Tution Fee Category with Confirmatory Factor Analysis Approach

Wiyli Yustianti

171 - 176

Social Media Strategy for Government Information Services: A Case of the Ministry of Education and Culture in Indonesia

Nur Widiyanto, A.N. Hidayanto, Puspa I. Sandhyaduhita, Nur Fitriah A. Budi

177 - 182

Continuance Usage Intention and Intention To Recommend on Information Based Mobile Application A technological and user experience perspective

Nurlina Setyawan, Muhammad Rifki Shihab, Achmad Nizar Hidayanto, Ave Adriana Pinem

183 - 188

Evaluating the implementation of open data principles on government websites in Indonesia

Widia Resti Fitriani, Achmad Nizar Hidayanto, Betty Purwandari, Bobby A. A. Nazief, Bob Hardian

189 - 196

Information Retrieval

Contextual Keyword Spotting in Lecture Video With Deep Convolutional Neural Network

Muhammad Bagus Andra, Tsuyoshi Usagawa

197 - 202

Punishment Provision Extraction From Indonesian Law Texts With Knowledge Acquisition Rules <i>Budi Hartadi, Indra Budi</i>	203 - 208
Multiclass SMS Message Categorization: Beyond Spam Binary Classification <i>Mohamad Dwijyan Rahmantio</i>	209 - 214
Further Studies of DBpedia Entities Expansion in Automatically Building Dataset for Indonesian NER <i>Ika Alfina, Septiviana Savitri, Mohamad Ivan Fanany</i>	215 - 220
Corpus Development for Indonesian Consumer-Health Question Answering System <i>Rahmad Mahendra</i>	221 - 226
Named Entity Recognition on Indonesian Twitter Posts using Long Short-Term Memory Networks <i>Valdi Rachman, Septiviana Savitri, Fithriannisa Augustianti, Rahmad Mahendra</i>	227 - 232
Detecting Hate Speech on Tweets in Indonesian Language Using Machine Learning Approach <i>Ika Alfina, Rio Mulia, Mohamad Ivan Fanany, Yudo Ekanata</i>	233 - 238
Machine Learning and Computer Vision	
Kidney Transplant Classification with Gene Expression Profiles using L1 Feature Selection Ensemble Classifier based on Data Clustering <i>M Octaviano Pratama</i>	239 - 244
Automatic Land Cover Classification of Geotagged Images using ID3, Naïve Bayes and Random Forest <i>M. Octaviano Pratama, Aniati Murni Arymurthi</i>	245 - 250
Intuitionistic Fuzzy Hedges Modeling for Supplier Selection of Responsive Agroindustrial Multi Products Supply Chains in Small and Medium Enterprises <i>Taufik Djatna, Rohmah Luthfiyanti, Akmadi Abbas</i>	251 - 256
Restricted Boltzmann Machines for Unsupervised Feature Selection with Partial Least Square Feature Extractor for Microarray Datasets <i>Lintang Adyuta Sutawika</i>	257 - 260
Optimization of FIS Tsukamoto using Particle Swarm Optimization for Dental Disease Identification <i>Diny Melsye Nurul Fajri, Wayan Firdaus Mahmudy, Yusuf Priyo Anggodo</i>	261 - 268
Detection Precursor of Sumatra Earthquake Based on Ionospheric Total Electron Content Anomalies using N-Model Artificial Neural Network <i>Bernadus Anggo Seno Aji, The Houw Liong, Buldan Muslim</i>	269 - 276

Estimating the Collected Funding Amount of the Social Project Campaigns in a Crowdfunding Platform <i>Galuh Tunggadewi Sahid, Ivana Putri, Intan Sari Septiana, Rahmad Mahendra</i>	277 - 282
A Classification Method using Deep Belief Network for Phonocardiogram Signal Classification <i>Moh. Faturrahman, Ito Wasito, Fakhirah Dianah Ghaisani, Ratna Mufidah</i>	283 - 290
Assessing Data Veracity through Domain Specific Knowledge Base Inspection <i>Alex C. Olivieri, Shaban Shabani, Maria Sokhn, Philippe Cudr'e-Mauroux</i>	291 - 296
Learning Explicit and Implicit Knowledge with Differentiable Neural Computer <i>Adnan Ardhan, Mohamad Ivan Fanany</i>	297 - 302
Sleep Stage Classification using Convolutional Neural Networks and Bidirectional Long Short-Term Memory <i>Intan Nurma Yulita, Mohamad Ivan Fanany, Aniati Murni Arymurthy</i>	303 - 308
Faster R-CNN with Structured Sparsity Learning and Ristretto for Mobile Environment <i>Muhammad Arif Nasution, Dina Chahyati, and Mohamad Ivan Fanany</i>	309 - 314
Shoreline Change Detection Based on Multispectral Images Using 2D-Principal Component Analysis of Band Images And Histogram of Oriented Gradient Features <i>I Gede Wahyu Surya Dharma, Aniati Murni Arymurthy</i>	315 - 320
Voxel-Based Irregularity Age Map for Brain's White Matter Hyperintensities in MRI <i>Muhammad Febrian Rachmadi, Maria del C. Vald'es-Hern'andez, Taku Komura</i>	321 - 326
Cancer Lungs Detection on CT Scan Image Using Artificial Neural Network Backpropagation Based Gray Level Cooccurrence Matrices Feature <i>Lilik Anifah</i>	327 - 332
Classification of Diabetic Retinopathy Through Texture Features Analysis <i>Bariqi Abdillah, Alhadi Bustamam, Devvi Sarwinda</i>	333 - 338
Extracting Fuzzy Rules and Parameters Using Particle Swarm Optimization for Rainfall Forecasting <i>Tirana Noor Fatyanosa, Fatwa Ramdani, Gusti Ahmad Fanshuri Alfarisy, Wayan Firdaus Mahmudy, Arief Andy Soebroto</i>	339 - 344
Genetic Algorithm for Optimizing FIS Tsukamoto for Dental Disease Identification <i>Triando Hamonangan Saragih, Wayan Firdaus Mahmudy, Yusuf Priyo Anggodo</i>	345 - 350
Data-driven Fuzzy Rule Extraction for Housing Price Prediction in Malang, East Java <i>Ruth Ema Febrita, Adyan Nur Alfiyatin, Hilman Taufiq, Wayan Firdaus Mahmudy</i>	351 - 358
MobiAugmented Reality: Studio Lighting Photography Simulator ver.1.0 <i>Setya Chendra Wibawa, D. S. Katmitasari, A. Prapanca, M.S. Sumbawati</i>	359 - 366

Residual Convolutional Neural Network for Diabetic Retinopathy <i>Syahidah Izza Rufaida</i>	367 - 374
Sentence-level Indonesian Lip Reading with Spatiotemporal CNN and Gated RNN <i>Muhammad Rizki Aulia Rahman Maulana, Mohamad Ivan Fanany</i>	375 - 380
Indonesian Audio-Visual Speech Corpus for Multimodal Automatic Speech Recognition <i>Muhammad Rizki Aulia Rahman Maulana, Mohamad Ivan Fanany</i>	381 - 386
Differentially Private Optimization Algorithms for Deep Neural Networks <i>Roan Gylberth, Risman Adnan, Setiadi Yazid, T. Basaruddin</i>	387 - 394
Sequential Forward Floating Selection with Two Selection Criteria <i>Dani Setiawan, Wisnu Ananta Kusuma, Aji Hamim Wigena</i>	395 - 400
Comparison Study of Machine Learning Algorithm for Epileptic Seizure Classification on EEG Signals <i>Elly Matul Imah</i>	401 - 408
Ensemble Learning for Protein Secondary Structure Analysis <i>Syam B. Iryanto, Taufik Djatna, Toto Haryanto</i>	409 - 414
An Initial Exploration of the Suitability of Long-Short-Term-Memory Networks for Multiple Site Fatigue Damage Prediction on Aircraft Lap Joints <i>Muhammad Ihsan Mas, Mohamad Ivan Fanany, Timotius Devin, Lintang A. Sutawika</i>	415 - 422
Bootstrap Aggregating of Classification and Regression Trees in Identification of Single Nucleotide Polymorphisms <i>Lailan Sahrina Hasibuan, Nurul Hudachair, Muhammad Abrar Istiadi</i>	423 - 426
Continuous Conditional Random Fields in Predicting High-Dimensional Data <i>Sumarsih Condroyu Purbarani, H.R Sanabila, Ari Wibisono, Wisnu Jatmiko</i>	427 - 432
Prediction of Bitcoin Exchange Rate to American Dollar Using Artificial Neural Network Methods <i>Arief Radityo, Qorib Munajat, Indra Budi</i>	433 - 438
Bhattacharyya Distance-based Tracking: A Vehicle Counting Application <i>Jatmiko Budi Baskoro, Ari Wibisono, Wisnu Jatmiko</i>	439 - 444
Reliable Software Engineering	
Information System Architecture Design as Part of Enterprise Architecture Development <i>Rumata Romaida Marsaulina Silaban</i>	445 - 452
Extending Automated Analysis of Feature Models in Abstract Behavioral Specification <i>Adriyan Chairul Achda, Ade Azurat, Radu Muschevici, Maya R.A Setyautami</i>	453 - 458

Tabling in Contextual Abduction with Answer Subsumption <i>Syukri Mullia Adil Perkasa, Ari Saptawijaya, Luís Moniz Pereira</i>	459 - 464
Intelligent Agents via Joint Tabling of Logic Program Abduction and Updating <i>Ammar Fathin Sabili, Ari Saptawijaya, Luís Moniz Pereira</i>	465 - 470
Bringing Answer Set Programming to the Next Level: a Real Case on Modeling Course Timetabling <i>Irvi Firqotul Aini, Ari Saptawijaya, Siti Aminah</i>	471 - 476
Concept Representation as Artifact Development Method Automation Enabler <i>Bayu Tenoyo, Petrus Mursanto, Harry Budi Santoso</i>	477 - 482
Feature Grouping Using Abstract Behavioral Specification Language <i>Reza Mauliadi, Ade Azurat, Radu Muschevici, Maya R.A Setyautami</i>	483 - 488

Determining Student's Single Tuition Fee Category Using Correlation Based Feature Selection and Support Vector Machine

W Yustanti

Department of Informatics
Engineering
Universitas Negeri Surabaya
Surabaya, Indonesia
wiyliyustanti@unesa.ac.id

Y Anistyasari

Department of Informatics
Engineering
Universitas Negeri Surabaya
Surabaya, Indonesia
yenian@unesa.ac.id

Elly Matul Imah

Mathematics Department
Universitas Negeri Surabaya
Surabaya, Indonesia
ellymatul@unesa.ac.id

Abstract— the government has issued the regulation about the enactment of a single tuition fee based on the socio-economic conditions of each student since 2013. All public universities are required to implement this policy. Therefore, each university needs to create a formulation that can be used to categorize a student into which cost group. The results of the data collection found that the parameters used to determine the classification of tuition fees between one universities with another are different. In this research, taken a sampling of student data at one public university database. Before classifying, the attribute of dataset was selected using correlation based feature selection (CFS). The classifier hath has been used in this study is Support Vector Machine (SVM).

Keywords—single tuition fee; confirmatory factor analysis; ordinal data; structural equation modelling, sosiso economy status

I. INTRODUCTION

Single Tuition Fee (STF) is a policy of Indonesian government which is enforced since 2013. This policy is aimed at helping and easing the cost of student education with cross-subsidy system through the category of STF adjusted to the student's socio-economic status (SES). Single tuition fee makes it easy to predict student tuition expenses for each semester and there will be no additional fees. In the regulation of the ministry of higher education number 39 of 2017 mentioned that students can apply for payment waivers of STF if the university decision is not in accordance with the conditions of their parents. This policy raises the consequence that universities should be able to make an accurate formulation regarding the determination of STF categories on each student based on their economic capabilities. The false prediction in the classification of STF resulted in complaints or even the failure of students to re-register as a freshman at the university. Based that reason, the main goal of this research is to develop the model of classification algorithm in predicting STF based on university database in order to assist the authority makes the decision in classifying the student's STF.

Some studies have been conducted related to determine the single tuition. Ariady et al has done a project about determining STF using Fuzzy C Means approach by using 7 variables

predictors. This paper did not describe clearly the accuracy of prediction based the method because the focus of that research is just applying Fuzzy C Means in decision support system (DSS) [1]. The second paper is presented by Gumelia et al in national conference which had studied about prediction the STF of level 1 based on Additive Weighting (SAW) method with 10 variables. This study explained that there is a specific constraint for determining first level of STF, it must meet at least minimum 5 percent from the total of new students. [5]. Previous researchers are not focus to model the algorithm but just implement the method in a sample data. Considering that there is still no research related to the classification modeling for the determination of STF category, then in this study will be tested to see how the best model of the determination process of STF based on existing data in the university database. The formal definition of STF is the cost of each student based on his economic ability [8]. The STF consists of several groups determined on the basis of economic capacity of student, parents of students or others who finance it. Based on the definition of STF, the term of socio-economic is also very important. Socioeconomic status (SES) is one of the most widely studied constructs in the social sciences. Most of them describe that SES is constructed from three kinds of capitals. These are financial capital (material resources), human capital (non-material resources such as education), and social capital (resources achieved through social connections). In other paper mentioned that SES is about family background it is said that in determining family background mostly used parental income, education and occupations and also home resource. [9].

The classification of SFS in this study uses correlation based feature selection (CFS) and Backpropagation Neural Network. CFS are commonly used algorithms for feature selection as performed by Elen et al, she use CFS for Feature Selection Methods in the Analysis of a Population Survey Dataset[11]. Machine learning is also often used for SES classification, like researches that conducted by Michael[12], Zhang[13], Victor Soto[14]. Based on the literatures, this study used CFS as feature selection and SVM as classifier for Determining Student's Single Tuition Fee Category.

II. DATA PREPROCESSING

A. Single Tuition Fee (STF)

Paragraph 5 of article 1 of the ministerial regulation No. 55 of 2017 on a single college tuition at the state university defines STF as the cost of each student based on his economic ability. The STF consists of several groups determined on the basis of economic capacity of student, parents of students or others who finance it. Each public university proposes a STF grouping model to the finance minister in order to be established formally. The regulation also states that university leaders can provide STF relief and / or re-enforce STF to students if there are [2]:

- The discrepancies in the economic capacity of the student submitted by the student, the student's parent, or any other party financing it; And / or
- Changes in the economic capability of students, parents, or others who finance it.

Besides, it is also stipulated that public university is prohibited to collect base money and / or other levies other than STF from new students of diploma and undergraduate program for the benefit of direct learning service. The university does not bear student fees consisting of personal cost, the cost of community service program, dormitory fees and learning activities and research carried out independently.

B. Socioeconomic Status (SES)

There are several definition of socioeconomic status based on some reviews of papers. Socioeconomic status (SES) is one of the most widely studied constructs in the social sciences. Most of them describe that SES is constructed from three kinds of capitals. These are financial capital (material resources), human capital (nonmaterial resources such as education), and social capital (resources achieved through social connections). SES is about family background It is said that in determining family background mostly used parental income, education and occupations, and also home resource [9]. An expanded SES measure could include measures of additional household, neighborhood, and school resources.

This study will rely on the definitions and measures as described by a recommendation of panel discussion of experts result about socioeconomic status as a construct [3]. SES can be defined **widely as one's access to financial, social, cultural, and human capital resources**. The path diagram of this concept can be explain in Fig. 1. Fig. 1 also is known as path analysis, which is a development technique of multiple linear regression to test the contribution shown by path coefficient on each path diagram of the causal relationship between variables X_1 X_2 and X_3 to Y and their impact on Z . This analyzes the causal relationships that occur in multiple regression if the independent variables affect the dependent variable not only directly but also indirectly. Based on fig.1, SES is constructed from 4 principle factor (financial, human, social and culture) which are called unobserved variable (oval symbol). This is also called as latent variable. Latent variable cannot directly measured but it can be measured using other variable which are called as indicator variable (square symbol)

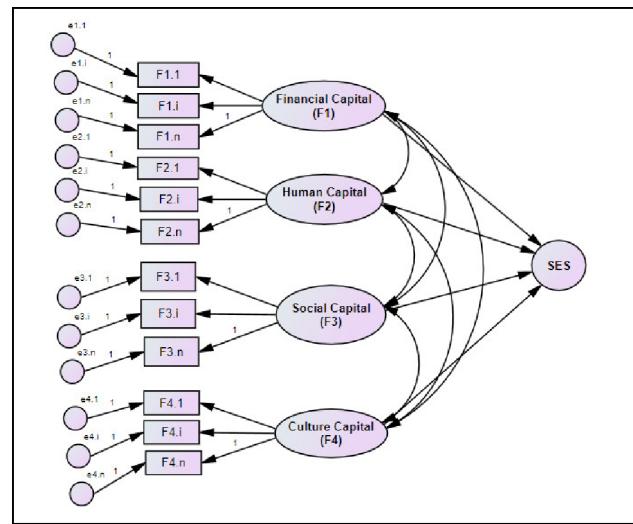


Fig. 1. Path diagram of SES Construct and Measures

C. Correlation Based Feature Selection (CFS)

Representing set of feature for build a classification model for a particular task is an important phase in machine learning. Correlation-based Feature Selection (CFS) is an algorithm that able to handling evaluation formula with an appropriate correlation measure and a heuristic search strategy[14]. CFS is a simple filter algorithm that ranks subsets according to a correlation based heuristic evaluation function. The bias of the evaluation function is toward subset that contain features that are highly correlated with the class and uncorrelated with each other. **CFS's feature subset evaluation function can be seen on Eq. 1.**

$$M_S = \frac{k\bar{r}_{cf}}{\sqrt{k + k(k-1)\bar{r}_{ff}}} \quad (1)$$

Where M_S is the heuristic of feature subset S containing k feature, \bar{r}_{cf} is the mean feature-class correlation($f \in S$), and \bar{r}_{ff} is the average feature-feature inter-correlation. Eq. 1 can be thought of as providing an indication of how predictive of the class a set of feature are; the denominator of how much redundancy there is among the features. CFS assumes that features are conditionally independent given the class. CFS treats feature uniformly by discretizing all continuous feature in the training data at outset.

III. CLASSIFICATION

Support Vector machine (SVM) is classification algorithm with a great mathematically concept. SVM is proposed by Vapnick using basic concept Maximal Margin Classifier[15]. It is simple to understand the basic ideas behind more sophisticated SVMs. Consider a linearly separable dataset $\{(X_i, d_i)\}$, where X_i is the input pattern for the i :th example and d_i is the corresponding desired output $\{-1, 1\}$. The assumption, *the dataset is linearly separable*, means that there exists a hyper plane working as the decision surface. We can write:

$$\begin{aligned} \mathbf{W}^T \mathbf{X}_i + b &\geq 0, \text{ then } d_i = +1 \\ \mathbf{W}^T \mathbf{X}_i + b &\leq 0, \text{ then } d_i = -1 \end{aligned} \quad (2)$$

where $\mathbf{W}^T \mathbf{X}_i + b$ is the output function. The distance from the hyper plane to the closest point is called the geometric margin. The idea is, to have a good machine, so the geometric margin needs to be maximized. First, we introduce the marginal function $\mathbf{W}^T \mathbf{X}_i + b$ because the dataset is linearly separable we can rewrite as (3), as follow:

$$\begin{aligned} \mathbf{W}^T \mathbf{X}_i + b &= +1 \\ \mathbf{W}^T \mathbf{X}_i + b &= -1 \end{aligned} \quad (3)$$

where $\mathbf{X}^+(\mathbf{X}^-)$ is the closest data point on the positive (negative) side of the hyperplane. Now it is straight forward to compute the geometric margin.

$$\begin{aligned} \gamma &= \frac{1}{2} \left(\frac{\mathbf{W}^T \mathbf{X}^+ + b}{|\mathbf{w}|} - \frac{\mathbf{W}^T \mathbf{X}^- + b}{|\mathbf{w}|} \right) \\ &= \frac{1}{2|\mathbf{w}|} (\mathbf{W}^T \mathbf{X}^+ + b - \mathbf{W}^T \mathbf{X}^- - b) \\ &= \frac{1}{2|\mathbf{w}|} (1 - (-1)) = \frac{1}{|\mathbf{w}|} \end{aligned} \quad (4)$$

Hence, equivalent to maximize the geometric margin is fixing the functional margin to one and minimizing the norm of the weight vector $|\mathbf{w}|$. This can be formulated as a quadratic problem with inequality constraints

$$d(\mathbf{w}^T \mathbf{x}_i + b) \geq 1.$$

$$\begin{aligned} \min: \frac{1}{2} \mathbf{W}^T \mathbf{W} \quad (\text{quadratic - problem}) \\ \text{subject to: } d(\mathbf{w}^T \mathbf{x}_i + b) \geq 1 \end{aligned} \quad (5)$$

By the use of Lagrange multipliers $\alpha_i \geq 0$ the original problem is transformed into the dual problem. From the Kuhn–Tucker theory we have the following condition:

$$\alpha_i [d_i(\mathbf{w}^T \mathbf{x}_i + b) - 1] = 0 \quad (6)$$

It means that only the points with functional margin unity contribute to the output function. These points are called the Support Vectors, which support the separating hyper plane. In non-linear classification problem, SVM was developing by using Mercer theorem that commonly knowns as Kernel Trick.

IV. RESULT AND DISCUSS

A. DATASET

The data is collected since 2016 to 2017 in registration process of new student in a public university. The student must fill the form provided in registration online system. In order to understand the data, the Table I below will describe the table fields.

TABLE I LATEN AND INDICATOR VARIABLES IN STUDENT DATABASE

Latent Variable		Indicator Variable		Measurement Scale
ξ_1	Financial Capital Resources (FCR)	x_1	Mother's employment	Ordinal
		x_2	Father's employment	Ordinal
		x_3	Mother's salary	Ordinal
		x_4	Father's salary	Ordinal
		x_5	Mother's other income	Ordinal
		x_6	Father's other income	Ordinal
		x_7	Number of dependent	Ordinal
		x_8	House tenure	Ordinal
		x_9	Electricity Power	Ordinal
		x_{10}	Land Size	Ordinal
		x_{11}	House Size	Ordinal
		x_{12}	Landhouse Tax Value	Ordinal
		x_{13}	Roof Material	Nominal
		x_{14}	Floor Material	Nominal
		x_{15}	Wall Material	Nominal
		x_{16}	Wall Condition	Ordinal
		x_{17}	Livingroom Condition	Ordinal
		x_{18}	Roof Condition	Ordinal
		x_{19}	Bathroom Condition	Ordinal
		x_{20}	Kitchen Condition	Ordinal
		x_{21}	Guestroom Condition	Ordinal
		x_{22}	Family room Condition	Ordinal
		x_{23}	Bedroom Condition	Ordinal
		x_{24}	Balcony Condition	Ordinal
		x_{25}	Has Bathroom	Nominal
		x_{26}	Has Washing Area	Nominal
		x_{27}	Has Toilet	Nominal
		x_{28}	Water Bill	Ordinal
		x_{29}	Electricity Bill	Ordinal
		x_{30}	Phone Bill	Ordinal
		x_{31}	Internet Bill	Ordinal
		x_{32}	Number of People at Home	Scale
		x_{33}	Motor Tenure	Ordinal
		x_{34}	Car Tenure	Ordinal
		x_{35}	Children are Schooling	Scale
ξ_2	Human Capital Resources (HCR)	x_{36}	Mother's education	Ordinal
ξ_3	Social Capital Resource (SCR)	x_{37}	Father's education	Ordinal
ξ_4	Culture Capital Resource (CCR)	x_{38}	Is Father Alive	Nominal
		x_{39}	Father's Relationship	Nominal
		x_{40}	Is Mother Alive	Nominal
		x_{41}	Distance from City	Ordinal
		x_{42}	Source of Water	Nominal
		x_{43}	Source of Electricity	Nominal

B. EXPERIMENTAL RESULT

Experiment was run using WEKA. Dataset consist of 44 feature that classify into 6 classes, K1, K2, K3, K4, K5, and K6. Using CFS 43 feature have been selecting, the selected feature is **father's** employment (x_2), **mother's** salary (x_3), **father's** salary(x_4), house tenure (x_8), electricity power (x_9), house size(x_{11}), land house tax value (x_{12}), kitchen condition (x_{20}), electricity bill (x_{29}), internet bill(x_{30}), motor tenure (x_{33}), car tenure (x_{34}), **mother's** education (x_{36}). Selected feature will be compare to full feature for classifying **Student's** Single Tuition Fee Category. Dataset is imbalanced data with ratio of imbalanced class 1:50. The classification result can be seen on Table 2.

TABLE II. CONFUSSION MATRIX OF SINGLE TUITION FEE CATEGORY USING SVM BEFORE CFS

confusion matrix		Classified as					
		a	b	c	d	e	f
real classes	a = K3	565	225	77	0	4	0
	b = K4	271	2124	6	186	1	0
	c = K2	251	10	138	1	42	0
	d = K5	0	255	0	1734	0	0
	e = K1	6	1	46	0	63	0
	f = K6	0	0	0	50	0	0

TABLE III. CONFUSSION MATRIX OF SINGLE TUITION FEE CATEGORY USING SVM AFTER CFS

confusion matrix		Classified as					
		a	b	c	d	e	f
real classes	a = K3	562	209	99	0	1	0
	b = K4	161	2281	0	146	0	0
	c = K2	184	11	232	0	15	0
	d = K5	0	180	0	1802	0	7
	e = K1	4	1	58	0	53	0
	f = K6	0	0	0	27	0	23

Base on Table 2, we can see after feature selection, the minor classes still able to classify with a good performance than before feature selection processing. The accuracy of classification before selecting the feature using CFS is 66.52%, and the accuracy of classification after selecting the feature using CFS is 81.78%. Detail of performance classification **student's single tuition fee category as preliminary for develop automation system for determining student's single tuition fee** can be seen on Table 4.

TABLE IV. EVALUATION MEASURE OF CLASSIFICATION USING CFS AND SVM

Class	Recall	F-Measure	ROC Area
K3	0.645	0.631	0.904
K4	0.881	0.866	0.903
K2	0.525	0.558	0.947
K5	0.906	0.909	0.963
K1	0.457	0.573	0.985
K6	0.46	0.575	0.984
Weighted Avg.	0.818	0.816	0.928

ROC of classification in table 4 shown good performances, but global accuracy need to be increased. Class K2, K3, and K4 is non-linear separable, and very difficult to classify see on Table 3. This is why the global accuracy needs to be improved. Scatter plot of mother salary and father salary related to category of **student's single tuition fee and be seen on Fig.2**.

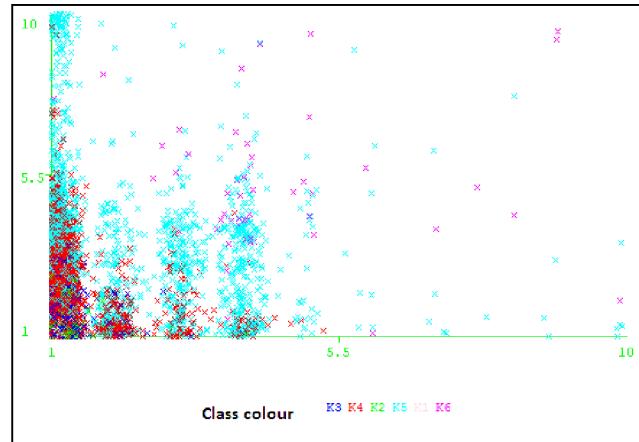


Fig. 2. Scatter plot of mother salary and father salary

V. CONCLUTION

The results of this study have shown that the use of Correlation Based Feature Selection (CFS) for selecting the best feature has been able to improve classification performances. The accuracy of classification before using CFS is 66.52%, then after selecting feature using CFS increase to 81.78%. ROC Area of classification using combination of CFS and SVM is very good, the ROC area of classification is 92.8%, and this value is equally in every class. Class K2, K3, and K4 is very difficult to separating, so to handling this problems we need to improve our methods.

REFERENCES

- [1] Ariyady Kurniawan Muchsin, Made Sudarma," Penerapan Fuzzy C-Means Untuk Penentuan Besar Uang Kuliah Tunggal Mahasiswa Baru", Bali, Jurnal Lontar Komputer, Vol. 6, no.3, Desember, ISSN: 2088-1541, DOI: 10.24843/LKJITI.6.3.16975, 2015
- [2] Cavdar, S. C., & Aydin, A. D., "An Experimental Study on Relationship between Student Socio-Economic Profile, Financial Literacy, Student Satisfaction and Innovation within the Framework of TQM", Procedia-Social and Behavioral Sciences, 195, 739-748, 2015
- [3] Ensminger ME, Forrest CB, Riley AW, Kang M, Green BF, Starfield B, Ryan SA, "The validity of measures of socioeconomic status of adolescents", Journal of Adolescent Research, May;15(3):392-419, 2000
- [4] Gegel, L., Lebedeva, I., & Frolova, Y, "Social Inequality in Modern Higher Education. Procedia-Social and Behavioral Sciences" 214, 368-374, 2015
- [5] Gusmelia Testiana, Rachmansyah," Pemanfaatan Metode Simple Additive Weighting (SAW) untuk Penentuan Penerima UKT Kelompok 1", Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 9, Pekanbaru, 18-19 Mei, ISSN (Online) : 2579-5406, 2017
- [6] Jerrim, J., Chmielewski, A. K., & Parker, P., "Socioeconomic inequality in access to high-status colleges: A cross-country comparison", Research in Social Stratification and Mobility, 42, 20-32, 2015
- [7] Leigh, A., Jencks, C., & Smreeding, T. M. " Health and economic inequality", The Oxford Handbook of Economic Inequality, Oxford University Press, Oxford, 384-405, 2009
- [8] Regulation of the minister of research, technology and high education of the republic of Indonesia number 39 year 2017 about the single tuition fee for public universities, Jakarta, May 2017.

[9] U.S. Department of Education, Improving the Measurement of Socioeconomic Status for the National Assessment of Educational Progress: A Theoretical Foundation , Recommendations to the National Center for Education Statistics, Institute of Education Sciences, National Center for Education Statistics, November 2012, retrieved from https://nces.ed.gov/nationsreportcard/pdf/researchcenter/Socioeconomic_Factors.pdf

[10] White, K. R., "The relation between socioeconomic status and academic achievement", *Psychological bulletin*, 91(3), 461, 1982

[11] E. Pitt and R. Nayak, "The Use of Various Data Mining and Feature Selection Methods in the Analysis of a Population Survey Dataset," in *Proceedings 2nd International Workshop on Integrating Artificial Intelligence and Data Mining (AIDM 2007) CRPIT*, 2007, pp. 87-97.

[12] M. S. C. Thomas, N. a Forrester, and A. Ronald, "Modeling socioeconomic status effects on language development.", *Dev. Psychol.*, vol. 49, no. 12, pp. 2325-43, 2013.

[13] X. Zhang, K. Tocque, J. Boothby, P. Cook, and M. Li, "Exploration of Relationship between Social Status and Mortality Rates in England," *Neural Networks*, 2008.

[14] M. Hall, "Correlation-based Feature Selection for Machine Learning," *Methodology*, vol. 21i195-i20, no. April, pp. 1-5, 1999.

[15] E. M. Imah, F. Al Afif, M. Ivan Fanany, W. Jatmiko, and T. Basaruddin, "A comparative study on Daubechies Wavelet Transformation, Kernel PCA and PCA as feature extractors for arrhythmia detection using SVM," in *IEEE Region 10 Annual International Conference, Proceedings/TENCON*, 2011, pp. 5-9.

