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Abstract: A power system is a collection of equipment that has characteristics. Power system stability is maintaining 

how the system can return to its position. Power system stabilizer (PSS) is a device used to maintain the stability of 

the power system due to load changes. The archimedes optimization algorithm (AOA) is a metaheuristic method based 

on the force that occurs in the fluid due to a load. The method is based on the laws of physics. A neural network is a 

concept to duplicate the work function of the human brain. In this study, the archimedes optimization algorithm (AOA) 

will be proposed to improve the performance of the feed forward neural network (FFNN). This hybrid method is called 

AOA-NN. The hybrid method is used to improve the performance of power system stabilizers. To test the ability and 

effectiveness of the AOA-NN method, a comparison with the conventional PSS, feed-forward neural network (FFNN), 

Cascade-forward neural network (CFNN), Distributed time-delay neural network (DTDNN) and Sine Tree-Seed 

Algorithm – Feed-forward Neural network (STSA-NN) method are applied. From the research, it can be concluded 

that the method proposed by AOA-NN has the best ability. The AOA-NN method has the ability to reduce the 

overshoot speed with an average value of 85.43972% and the overshoot rotor angle with an average value of 38.9278%. 

Keywords: Archimedes optimization algorithm, Feed-forward neural network, Power system stabilizer, Nature 

inspired algorithms, Metaheuristic. 

 

 

1. Introduction 

Keeping the power system in a stable condition is 

a challenge and difficult in the future. This is 

influenced by a variety of loads and networks that are 

increasing sharply [1]. When a system is in trouble, 

the generator will experience wobbling and lose 

synchronization. This has a major effect on system 

dynamics. The power system is a system of 

compound and character. It is influenced by 

complexity and multi-components. The system has 

its own behavior. This is due to different loads. In 

addition, the generator has its own scheme or 

schedule. 

The application of an automatic voltage regulator 

(AVR) with a high gain value in the excitation system 

at the generator is created new problems. This results 

in low frequency electromechanical oscillations can 

reduce the damping torque. The application of an 

automatic voltage regulator (AVR) with a high gain 

value in the excitation system at the generator creates 

its own problems. This is resulting in low-frequency 

electromechanical oscillations having an effect by 

reducing the damping torque. Low frequency 

oscillations are frequent and very detrimental [2]. 

Because it will affect the maximum power transfer 

and power system safety 

To fix this problem, the power system stabilizer 

(PSS) has function as a stabilizing signal to the 

automatic voltage regulator (AVR). The excitation of 

the generator will be modulated by the PSS to reduce 

the electric torque component with deviation of the 

rotor speed. This is to increase the damping of the 

generator. Many power companies are using PSS 

because it has the character of having a simple 

structure, easy to implement and flexible. PSS 

performance will experience changes due to non-

constant operation of the power system. The popular 
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PSS is applied based on classical linear control 

modeling [3] namely conventional PSS (CPSS). This 

modeling has constant parameters and power system 

settings. This modeling is suitable for use in a system 

that is constant and slightly changes [4]. For setting 

parameters on a large-scale power system which is 

collected from several single machines is not an easy 

thing. When one system has a good damping value. 

On the other hand, some systems are not damped. 

This is exacerbated by the ever-changing load. 

The development of computational theory and 

algorithms has prompted researchers to focus 

switching conventional PSS to intelligent control 

based on artificial intelligence. In recent years, 

research using artificial intelligence has been widely 

presented.  

Cuckoo search optimization (CSO) is a method 

based on the cuckoo bird. This is an attractive bird 

that has a nice voice. On the other hand, they are 

aggressive reproductive strategies. PSS research uses 

the Cuckoo search optimization method as presented 

by Chitara et al [5]. In the paper, the CSO method is 

explored for the optimal and robust power system 

stabilizer (PSS) design for multi engine power 

systems. Testing using the New England 10-engine, 

39-bus Power System. A CSO based study also 

conducted by Djalal et al [6] investigated the 

placement and adjustment of PSS under N-1 

contingency. A study presented by Verma et al [7] 

who designed PID-PSS with the help of the CSO 

method. This study uses a single machine in testing. 

Bat algorithm (BA) is a bio-inspired algorithm. The 

bat algorithm is based on the echolocation or bio-

sonar characteristics of the microbats. Research that 

discusses BA as applied to PSS as presented by Chaib 

et al [8]. The paper is used the BA method in the 

hybridization of a fractional order PID controller 

(pikdl) and PSS for optimal stabilizer (FOPID-PSS). 

This study uses a single machine. A BA-based study 

was also presented by Djalal et al [9] who applied 

PSS to a 150 kv Sulselrabar system. Increasing the 

ability of the BA method as presented by Baadji et all 

[10], namely the Comprehensive Learning Bat 

Algorithm applied to the coordination of Power 

System Stabilizers (PSS) and Static Var 

Compensator (SVC). The paper is used a 400 MW 

multimachine system. 

The whale optimization algorithm (WOA) is 

based on this unique whale hunting method. This 

method observes the foraging method of humpback 

whales. This whale has a very special hunting method. 

Its name is called bubble net feeding. The whale 

creates two paths to reach its prey. Dasu et al [11] 

applied the WOA method to PSS using a 

multimachine system consisting of 3 generators and 

nine buses. The research conducted performance 

measurement by comparing the Particle swarm 

optimization (PSO) and Differential evolution (DE) 

methods. The application of WOA to PSS was also 

presented by Sahu et al [12]. The improved capability 

of the WOA method was presented by Sahu et al [13]. 

This research modifies the WOA for a coordinated 

structure that combines a static synchronous series 

compensator and a power system stabilizer. This 

method is called a modified whale optimization 

algorithm (MWOA).  

The Salp Swarm Algorithm (SSA) method is an 

algorithm that mimics the navigating and foraging 

behavior of salp fish in the oceans. Ekinci et al [14] 

applied the SSA method to the PSS tested on 3 

engines, 9 bus power systems. Performance 

comparison used the Tabu Search (TS) and the 

Biogeography-Based Optimization (BBO) methods. 

Bacterial foraging optimization (BFO) is based on 

social foraging behavior. Escherichia Coli (E. Coli) 

bacteria simulate the search for food in the human 

intestine. Ibrahim et al [15] designed a BFO-based 

PSS that was applied to a multimachine 4 machines 

11-buses 2-areas power system. In this study, the 

proposed BFO-based PSS was compared with three 

PSS, namely the simplified multi-band (MB) PSS, 

Conventional Delta PSS from P. Kundur, and the 

Conventional Acceleration Power (Delta Pa) PSS. 

Research by Ray et al [16] presented the optimization 

of PSS with BFO and PSO for increased system 

stability in the SMIB system. The innovation of the 

BFO method by combining it with other methods 

such as Fuzzy is presented by Khorram et al [17]. 

This method is called Fuzzy Adaptive Bacterial 

Foraging (FABF). This study presents a PSS design 

based on Fuzzy Adaptive Bacterial Foraging (FABF) 

which is tested on a 10-engine multimachine system, 

39-bus New England Power System. 

The Firefly Algorithm (FA) method is based on 

the behavior of fireflies and their blinking patterns. 

Several FA-based studies applied to PSS are widely 

presented. Farhad et al [18] presented a single 

machine system. This study presents a performance 

comparison with the BA method. 

Some researchers present PSS based on fuzzy 

methods. Shokouhandeh et al [19] presented an 

optimized and innovative type-2 fuzzy PID power 

system stabilizer (PSS). This stabilizer is a 

combination of a PID controller and a type-2 fuzzy 

set whose parameters have been optimized using the 

Hybrid Big Bang - Big Crunch (HBB - BC) algorithm. 

Khaddouj et al [20] presented a slidding mode 

controller (SMC) design combined with a type-2 

fuzzy power system stabilizer (PSS). Testing using a 

single machine system. 
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The use of the neural network method that is 

applied to PSS is also not little. Masrob et al [21] 

present a simple artificial neural network power 

system stabilizer. testing using a single machine 

system. The use of one of the neural network methods, 

namely the Distributed Time-Delay Neural Network, 

is presented by Aribowo [22]. The performance 

comparison in the paper uses the Recurrent Neural 

Network PSS (RNN-PSS) and Conventional PSS 

(CPSS) methods. The application of the Cascade-

forward neural network algorithm on PSS is 

presented by Aribowo et al [23]. The single machine 

system is used to test PSS performance. 

The Archimedes optimization algorithm is 

presented by Hashim et al in 2020 [24]. Algorithm 

Archimedes optimization algorithm is a 

metaheuristic method based on population. Neural 

networks are one of the most popular artificial 

intelligence and are often applied in various fields.  

This paper will explore the potential of metaheuristic 

methods, namely, Archimedes optimization 

algorithm (AOA) [24] to solve controlling parameter 

of PSS combined with feed forward neural network 

(FFNN). FFNN method is the most popular method 

used in various kinds of problem solving in 

engineering. FFNN has the flexibility and complexity 

of predicting nonlinear functions to the desired 

accuracy by varying the number of layers and hidden 

neurons in each of the layers respectively. The system 

is tested with 3 test scenarios. The contribution of this 

paper is  

1. The application of the latest and promising 

metaheuristic methods namely Archimedes 

optimization algorithm to combine with NN. 

The Archimedes optimization algorithm method 

is used to improve the ability of the neural 

network through weighting. 

2. Tested the method used in 3 case studies and 

comparison with other methods. Effectiveness 

and reliability testing of the proposed method is 

compared to CPSS, FFNN, DTDNN [22], 

CFNN [23], and STSA-NN. 

The paper is organized as follows: the second part 

provides a complete study of a brief description of the 

metaheuristic methods used in this paper, neural 

network and power system stabilizer. Section 3 

presents the results and performance comparison 

analysis. In the last section, a conclusion is drawn. 

2. Literature review 

2.1 An archimedes optimization algorithm 

The Archimedes optimization algorithm (AOA) 

is a metaheuristic method that is conceptualized from  

 
Figure. 1 Objects in the fluid 

 

an interesting physical law, namely the Archimedes 

Principle. The archimede concept declares when an 

object is submerged either partially or completely in 

a fluid. The fluid will labor an upward force on the 

object.  The force is common to the weight of the 

fluid displaced by the object. It is named buoyant 

force. Fig. 1 is displayed when an object is plunged 

in a fluid. AOA is maintaining a balance between 

exploration and exploitation because AOA is storing 

multiple solutions and investigates large areas to find 

the best global solutions [24]. 

The concept of AOA is like any other 

metaheuristic method that is population based. AOA 

starts the algorithm by initializing the population with 

random speed, density and volume. This will 

randomize the position in the fluid. Iteration will be 

carried out after the initial population suitability 

evaluation and until the conditions fulfilled. The 

volume and density of the objects will be updated 

with each iteration. Whereas, the update of the 

object's acceleration is based on the result of 

collisions with adjacent objects. 

The current position of an object is determined by 

the updates of its acceleration, density and volume. 

AOA algorithmically has good global optimization in 

the exploration and exploitation process. 

Mathematically, the AOA algorithm can be 

formulated as follows: 

Step 1— Initialization of the position 

𝑋𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 ×  (𝑢𝑏𝑖 − 𝑙𝑏𝑖); 𝑖 = 1,2,3, … . . , 𝑀
 (1) 

 

Where the upper and lower boundaries of the search 

space are 𝑢𝑏𝑖 and 𝑙𝑏𝑖. The ith entity in a population 

of n entity is 𝑋𝑖. The formula of the volume (𝑣𝑜𝑙) and 

density (𝑑𝑒𝑛) is using (2) and (3). 

 

𝑑𝑒𝑛𝑖 =  𝑟𝑎𝑛𝑑                           (2) 

 

𝑣𝑜𝑙𝑖 =  𝑟𝑎𝑛𝑑                           (3) 
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Where metrical vector randomly produced values 

between [0, 1] is 𝑟𝑎𝑛𝑑 . Evaluation of the initial 

population and determining the optimal fitness value 

are carried out in this phase. Evaluation of the initial 

population and determining the optimal fitness value 

are carried out in this phase. The optimal values 

obtained are 𝑑𝑒𝑛𝑏𝑒𝑠𝑡, 𝑣𝑜𝑙𝑏𝑒𝑠𝑡, 𝑎𝑐𝑐𝑏𝑒𝑠𝑡, and 𝑥𝑏𝑒𝑠𝑡. 

Step 2— Regenerated volumes and densities 

The volume and density of entity i for the 

iteration is regenerated applying (4) and (5). 

 

𝑑𝑒𝑛𝑖
𝑡+1 = 𝑑𝑒𝑛𝑖

1 + 𝑟𝑎𝑛𝑑 × ( 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 −  𝑑𝑒𝑛𝑖
1 )(4) 

 

𝑣𝑜𝑙𝑖
𝑡+1 =  𝑣𝑜𝑙𝑖

1 +  𝑟𝑎𝑛𝑑 × ( 𝑣𝑜𝑙𝑏𝑒𝑠𝑡 −  𝑣𝑜𝑙𝑖
1 )  (5) 

Step 3— Set density factor and transfer operator 

An equilibrium state occurs after a collision 

between objects. The transfer operator functions to 

change the search mode from exploration to 

exploitation. This can be formulated as follows: 

 

𝑇𝐹 = exp(
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
)                      (6) 

 

Where the TF value increases with a limit of 1. The 

maximum iterations and iterations are represented by 

𝑡 and 𝑡𝑚𝑎𝑥 . Global to local searches are optimized 

with density (𝑑) which decreases over time. 

 

𝑑𝑡+1 = exp(
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
) − (

𝑡

𝑡𝑚𝑎𝑥
)             (7) 

 

Where the ability to reach promising areas that have 

been discovered is 𝑑𝑡+1. This will maintain a balance 

between exploitation and exploration. 

Step 4 — Exploration (𝑻𝑭 ≤ 𝟎. 𝟓)  and 

exploitation (𝑻𝑭 > 𝟎. 𝟓) 

The collisions between entities occur when 𝑇𝐹 ≤
0.5 . It is Exploration phase. A random material 

(𝑑𝑒𝑛𝑚𝑟, 𝑣𝑜𝑙𝑚𝑟) is selected and the object speed is 

updated in this step. This is used Eq. (8): 

 

𝑎𝑐𝑐𝑖
𝑡+1 =

𝑑𝑒𝑛𝑚𝑟+𝑣𝑜𝑙𝑚𝑟×𝑎𝑐𝑐𝑚𝑟

𝑑𝑒𝑛𝑖
𝑡+1×𝑣𝑜𝑙𝑖

𝑡+1               (8) 

 

Changes in the value of 0.5 will affect exploration-

exploitation behavior. A value of 𝑇𝐹 ≤ 0.5 will keep 

the exploration longer. Next, It is a exploitation 

(𝑇𝐹 > 0.5). There is no crash between entities. 

 

𝑎𝑐𝑐𝑖
𝑡+1 =

𝑑𝑒𝑛𝑏𝑒𝑠𝑡+𝑣𝑜𝑙𝑏𝑒𝑠𝑡×𝑎𝑐𝑐𝑏𝑒𝑠𝑡

𝑑𝑒𝑛𝑖
𝑡+1×𝑣𝑜𝑙𝑖

𝑡+1            (9) 

Where the velocity of the best entity is 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 

Step 5 — Normalize velocity 

 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 = 𝑢 +  

𝑎𝑐𝑐𝑖
𝑡+1×min (𝑎𝑐𝑐)

max(𝑎𝑐𝑐)− min (𝑎𝑐𝑐)
+ 𝑙   (10) 

 

Where 𝑢 and 𝑙 are the space of normalization. It is set 

to 0.9 and 0.1. The 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1  establishes the 

possibility of pace that each individual will shift. The 

acceleration value will be high if entity i is far from 

global optimal. It can be said that the entity is in the 

exploration phase. In normal conditions, the 

acceleration factor will be at the highest position 

which will decrease according to the time allocation. 

Search agents will be encouraged to move away from 

local solutions to global solutions. In some cases, 

some agents are not optimal in this regard or take 

more time. 

Step 6 — Regenerate position 

If 𝑇𝐹 ≤ 0.5 (exploration phase) 

 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 + 𝐶1  × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 × 𝑑 ×

 (𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖
𝑡)                                (11) 

 

If 𝑇𝐹 > 0.5 (exploitation phase) 

𝑥𝑖
𝑡+1 =  𝑥𝑏𝑒𝑠𝑡

𝑡 + 𝐹 × 𝐶2  × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 ×

𝑑 ×  (𝑇 × 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡)                     (12) 

 

𝑇 =  𝐶3  × 𝑇𝐹                    (13) 

 

𝐹 =  {
+1 𝑖𝑓 𝑃 ≤ 0.5
−1 𝑖𝑓 𝑃 > 0.5

                      (14) 

 

𝑃 =  2 × 𝑟𝑎𝑛𝑑 − 𝐶4                     (15) 

 

Where 𝐶1  Is constant with a value of 2 and 𝐶2  Is 

constant with a value of 6. T is increases with time in 

space [𝐶3  × 0.3, 1]. Initial small percentage value 

results in a large difference between the current 

position and the best position. This results in a large 

random value. Increasing the percentage results in 

less difference between the current position and the 

best position. This results in achieving a good balance 

between exploration and exploitation. 𝐹  is the 

notation for changing the aim of motion. 

Step 7 — Evaluation 

Each entity will be evaluated using the objective 

function. the best solutions will be saved with 𝑎𝑐𝑐𝑏𝑒𝑠𝑡, 

𝑣𝑜𝑙𝑏𝑒𝑠𝑡, 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 and 𝑥𝑏𝑒𝑠𝑡 . 
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Figure. 2 Topology of neural network 

2.2 Neural network 

Duplicated by the skills from the human brain, 

neural networks are one of the wrong types of 

artificial intelligence. ANN simple topology consists 

of input, hidden and output layers [25]. The topology 

of neural network can be seen in Fig. 2. Node/neuron 

is the main item of ANN processing. In the first layer, 

the input nodes ( 𝑃𝑛)  admit data from the system 

outside the ANN.  In the second layer, the hidden 

nodes (𝑂1) admit data from the first layer. It is for 

calculation and processing. In the last layer, the 

output nodes (𝑂2) admit data from the second layer 

and computational of the results. In this paper, the 

neural network is using feed forward neural network. 

In some simple cases, it is using one hidden layer can 

solve the problem. On the other hand, a complex 

problem is not enough to use one hidden layer. 

 

𝑂1(𝑡) = ∑ 𝑊𝑖𝑗𝑃𝑛(t) + 𝑏1

𝑗

𝑖=1
                 (15) 

 

𝑂2(𝑡) = 𝑓(𝑂1(𝑡)) =
1

1+𝑒𝑥𝑝𝑂1
                  (16) 

2.3 Power system stabilizer 

In the last few decades, conventional power 

system stabilizers (PSS) have been very popular in 

power systems throughout the world. As an 

additional of control system, PSS is often used as an 

excitation control system. Conventional PSS are 

generally designed based on linearisation theory to 

damp rotor oscillations to the desired operating 

conditions [26]. This is what is called a stable system 

The work function of the PSS is to suppress the rotor 

oscillations in an effort to maintain balance in the 

system. PSS has been widely applied in single 

machine and multimachine systems. PSS basically 

consists of gain, lead-lag, and washout. Washout  

 
Figure. 3 Topology basic of PSS 

 

which functions as a high-pass filter that will allow 

and ensure the passing signal is appropriate and does 

not change. A lead-lag block or phase compensation 

that serves as a phase offset. This will supply a phase 

lead for counterbalance for the lag phase. The Basic 

structure of PSS can be seen in Fig. 3. 

3. Results and discussion 

As a control for PSS, the topology of the AOA-

NN method is shown in Fig. 4. FFNN method will 

recognize the incoming data. The best FFNN 

classification results based on the number of neurons 

in the hidden layer. The configured neural network 

will perform data mapping and detection. This will 

get weighted. The weight obtained is random and will 

be processed to get the best weight using the AOA 

method. The optimal population value of AOA is 50 

with 100 iterations. Population size and iteration will 

affect the performance of the AOA-NN method. 

Lower-bound and upper bound will place the optimal 

AOA-NN output This process will stop when it 

reaches the maximum iteration. 

Optimization of the neural network algorithm 

based on the AOA method for PSS control is 

programmed using MATLAB software. The 

generator is completed with speed control and turbine, 

which includes excitation, AVR, and PSS. To prove 

the robustness of the AOA-NN for the PSS setting, a 

single-engine power system simulation was 

performed. Data from conventional PSS are exploited 

to train and validate using AOA-NN PSS. In this 

study, it was tested with 3 test scenarios. The 

topology of the neural network has 5 neurons using 

the sigmoid activation function. Whereas, the purelin 

activation function is used in the output layer. In Fig. 

5, PSS based on the AOA-NN method is getting input 

in the form of speed data from the system output. 

Meanwhile, the target is learning outcomes using 

conventional PSS. 

The convergence curve of the all methods can be 

seen in Fig. 6. The proposed method is AOA-NN 

starting with the first value of 0.9248. The AOA-NN 

method has the end value of 0.1355. On the other 

hand, the FFNN method has the highest of the first 

value. It is 1.3080.  The lowest of the first value has 

DTDNN. The value is 0.1172. This study uses 3 

scenarios to test the effectiveness and durability of  
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Figure. 4 Diagram of AOA-NN 
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Figure. 5 AOA-NN PSS 

Table 1. Parameter of AOA-NN 

Parameter Value 

Number Of Population 50 

Maximum Iteration 100 

C1;C2;C3;C4 2;6;2;1 

Lower Bound ; Upper Bound -5.12;5.12 

 

the proposed method. The detail of scenario can be 

seen in Table 2 
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Figure. 6 The convergence curve 

 

 

Table 2. The scenario of system testing 

Case Load 

1 Full Load 

2 50% of Load 

3 25% Of Load 

 

In scenario 1, the single machine system is fully 

loaded. The response of the system in the form of 

speed and rotor angle can be seen in Fig. 7. In Fig. 7 

(a), the overshoot speed value of the system without 

PSS is 0.5809. Meanwhile, the overshoot value of the 

PSS using the AOA-NN method is 0.0858. The 

proposed method is able to reduce overshoot and 

undershoot of speed by 85.2298% and 47.92%. On 

the other hand, CPSS was only able to reduce 

overshoot and undershoot of speed by 74.6772% and 

39.5435%. In Fig. 7 (b), the undershoot value of the 

rotor angle of the PSS using the AOA-NN method is 

-1.611. The proposed method was able to reduce the 

undershoot by 38.6052%. This value is slightly below 

the CFNN method. The undershoot value using 

CFNN can reduce up to 39.0396%. Table 3 is detail 

of the result scenario 1.  

The results of scenario 2 can be seen in Fig. 8. Fig. 

8 (a) is the speed output. The overshoot speed using 

the AOA-NN method is 0.0418 and the undershoot is 

-0.2305. The application of the AOA-NN method is 

able to reduce overshoot and undershoot of speed by 

up to 85.611% and 41.1539%. The STSA-NN 

method is slightly less capable than the AOA-NN. 

The STSA-NN method is able to reduce overshoot 

and undershoot of speed by up to 81.18704% and 

41.1539%. Meanwhile, the response of the rotor 

angle for scenario 2 can be seen in Fig. 8 (b). The 

undershoot value of the proposed method is -1.1976 

and the settling time is 568 seconds. The AOA-NN 

method was able to reduce undershoot by 39.3979%. 

Application of the CFNN and STSA-NN methods in 

scenario 2 resulted in an undershoot value of the rotor 

angle up to 37.2027% and 37.3018%. The application 

of CFNN and STSA-NN methods has adjacent values. 

The detail of Scenario 2 can be seen in Table 4. 

Fig. 9 is the output of scenario 3. The overshoot 

value of a system without PSS is 0.1453 with a 

settling time of 473 seconds. The proposed method 

has an overshoot of speed by 0.0211 with a settling 

time of 517. In scenario 3, the AOA-NN method is 

able to reduce overshoot and undershoot speeds by 

85.4783% and 42.4273%. In scenario 3, the DTDNN  

 

 

 
(a) 

 
(b) 

Figure. 7 Output of scenario 1: (a) speed and (b) rotor angle 
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Table 3. The detail of scenario 1 

Methods 
Speed Rotor Angle 

Overshoot Under Shoot Time Settling Undershoot Time Settling 

Non-PSS 0.5809 -0.7842 498 -2.624 578 

CPSS 0.2381 -0.6298 430 -1.943 621 

FFNN PSS 0.1471 -0.4741 462.85 -1.657 625 

CFNN PSS 0.1248 -0.4827 519 -1.5996 686 

DTDNN PSS 0.2107 -0.7572 481 -1.7982 684 

STSA-NN PSS 0.1120 -0.5176 502 -1.6776 654 

AOA-NN PSS 0.0858 -0.4084 455 -1.611 571 

 

 
(a) 

 
(b) 

Figure. 8 Output of scenario 2: (a) speed and (b) rotor angle 

 

Table 4. The detail of scenario 2 

Methods 
Speed Rotor Angle 

Overshoot Under Shoot Time Settling Undershoot Time Settling 

Non-PSS 0.2905 -0.3917 599 -1.3120 641 

CPSS PSS 0.1190 - 0.3149 489 -0.9736 684 

FFNN PSS 0.0821 -0.2590 509 -0.8645 680 

CFNN PSS 0.0675 -0.2359 521 -0.8239 682 

DTDNN PSS 0.1389 -0.3813 478 -0.9598 675 

STSA-NN PSS 0.0547 -0.2573 501 -0.8226 655 

AOA-NN PSS 0.0418 -0.2305 522 -0.7951 638 

 

method experienced a fairly high decrease in 

performance. In the DTDNN method, the overshoot 

speed is only able to reduce by 3.0282%. while the 

speed undershoot value failed, adding up to -

14.9924% oscillation. The value of overshoot and 

undershoot speed is close to the value of the AOA-

NN method, namely the STSA-NN method. the 

values are 81.6242% and 33.5033%. Meanwhile, the 

undershoot of rotor angle is -0.4016 with a settling 

time of 630. In scenario 3, the application of the 

AOA-NN method has the ability to reduce the 

undershoot rotor angle slightly carried by STSA-NN. 

the application of STSA-NN was able to reduce the 

undershoot rotor angle by 39.1768%. while the AOA-

NN method has the ability to reduce undershoot rotor 

angle by 38.7805%. The difference between the 

STSA-NN and AOA-NN methods in reducing 

undershoot rotor angle is 0.0026 or 0.3963%. The 

detail of Scenario 3 can be seen in Table 5. 
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Table 5. The detail of scenario 3 

Methods 
Speed Rotor Angle 

Overshoot Under Shoot Time Settling Undershoot Time Settling 

Non-PSS 0.1453 - 0.1961 550 -0.6560 632 

CPSS 0.0595 -0.1580 480 - 0.4868 675 

FFNN PSS 0.0479 - 0.1389 489 - 0.4588 661 

CFNN PSS 0.0386 -0.1318 492 -0.4398 661 

DTDNN PSS 0.1409 - 0.2255 445 -0.5035 661 

STSA-NN PSS 0.0267 - 0.1304 488 - 0.3990 646 

AOA-NN PSS 0.0211 -0.1129 517 -0.4016 630 

 

 
(a) 

 
(b) 

Figure. 9 Output of scenario 3 (a) speed and (b) lotor angle 

 

4. Conclusion 

The research is to propose a hybrid AOA-NN 

method to improve the performance of power system 

stabilizers. To improve the performance of power 

system stabilizers, learning and training methods are 

used using data from the system. The data from the 

system taken is the output data in the form of speed. 

This data consists of data from systems with and 

without conventional PSS. This study uses 3 

scenarios in testing the effectiveness and toughness 

of the proposed system. The proposed method has the 

benefit of increasing the performance of the FFNN. 

This can be seen from the results of scenario 1 to 

scenario 3. In scenario 1, the use of the AOA-NN 

method can reduce overshoot and undershoot by 

41.67% and 13.857% from the speed compared to 

FFNN PSS. Meanwhile, the rotor angle can be 

reduced by 2.77%. In scenario 2, AOA-NN can 

reduce overshoot and undershoot by 49.08% and 

11% of the speed compared to FFNN PSS. The 

undershoot of the rotor angle in scenario 2 can be 

reduced by 8.03% compared to the FFNN PSS. 

Finally, the AOA-NN method can reduce the 

overshoot and undershoot values by 55.95% and 

18.72%. In scenario 3, the rotor angle is reduced by 

12.47% compared to the FFNN PSS. By giving the 

addition of the AOA method to the FFNN, the 

oscillation damping speed and rotor angle are 

increased. In this study, the proposed method AOA-

NN was tested on a simple system. In order to 

determine the robustness and reliability of the 

proposed method, it is necessary to carry out test 

cases on a more complex and non-linear system. 
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