

Copyright © 2017 American Scientific Publishers All rights reserved Printed in the United States of America Advanced Science Letters Vol. 23, 11879–11883, 2017

Classification of Lung Disease Syndromes in Traditional Chinese Medicine Based on Learning Vector Quantization

I. G. P. Asto Buditjahjanto^{1,*}, Naim Rochmawati¹, and R. Hapsari Peni²

¹Informatics Engineering Department, Universitas Negeri Surabaya, Kampus Ketintang, Jalan Ketintang, 60231, Surabaya, Indonesia ²Electrical Engineering Department, Universitas Negeri Surabaya, Kampus Ketintang, Jalan Ketintang, 60231, Surabaya, Indonesia

In Indonesia, the development of treatment methods of Traditional Chinese Medicine (TCM) has been growing rapidly. This is indicated that TCM as an alternative treatment other than conventional medicine to cure the disease. The problem arises when the students or people who want to learn TCM experiencing difficulty in determining the classification of syndrome. While conventionally, the determination of the classification of syndrome requires sufficient experience for the students or people that begin to learn TCM in order to be able to determine the classification of syndrome. The purpose of this research is to create software application that can help make a decision in determining the classification of lung disease syndrome in TCM. This software application can be used as a learning medium for students and people who learn about the classification of lung disease syndrome in TCM. This research uses Learning Vector Quantization (LVQ) method. As it is known, LVQ has superiority in classifying a data set into several clusters according to weight training on LVQ. The classification of lung syndrome-based LVQ is built by using input as many as 46 symptoms of lung syndrome, and the output as many as 5 types of lung syndrome. The simulation results show that LVQ can be used to classify the type of lung syndrome very well.

Keywords: Learning Vector Quantization (LVQ), Database, Decision Support System, Traditional Chinese Medicine (TCM).

1. INTRODUCTION

Currently, the development of treatment methods of Traditional Chinese Medicine (TCM) has been growing rapidly in Indonesia. This is indicated by large number of people use TCM as an alternative treatment beside conventional medicine to cure the disease. The problem arises when the students or people who want to learn TCM experiencing difficulty in determining the classification of syndrome. To diagnose a syndrome, it is needed some patients' physical status. They collected through four types of diagnostic methods such as: inspection, auscultation and olfaction, inquiry, and palpation. Then, a clinical TCM practitioner analyze and synthesize the information, symptoms, and patients' physical status to differentiate a disease.¹ The classification of the disease syndrome in TCM is one way to determine what action should be carried out in the treatment of patients. Incorrect in classifying a disease syndrome, causing the patient's recovery will be hampered.

While the determination of classification syndrome traditionally, it requires sufficient experience for people that learn TCM

to be able to determine a disease syndrome. This research uses Learning Vector Quantization (LVQ) method. As it is known, LVQ has superiority in classifying a data set into several clusters according to weight training on LVQ.^{2,3} LVQ has been widely used in helping human needs such as for classification textual document making it easier for searching for documents,⁴ to classify dimensional hyperspectral imagery⁵ and in the industrial world one of which is used to diagnosis of bottle filling plant on real time.⁶ Other fields that often use LVQ is the field of medicine. LVQ can assist to classify of mass spectrometry data of mass cancer,⁷ to classify of medical image such as MRI brain image to determine the presence of tumors,8 to help find abnormalities in the urinary system,⁹ to help find the presence of gallbladder stone,10 to determine the presence of breast cancer,11 to assist in classification of EEG¹² and also to classify of type of meniningioas.¹³ Indonesia as a tropical country has high humidity. This condition will affect the population's health condition. The tendency of the population to get the lung disease syndrome is great. Therefore this study is only restricted to learn about classification of lung disease syndrome. In this research the symptoms and the syndromes of lung is based on Cheng.¹⁴ The number of types of lung disease syndrome is 5 types and the

1936-6612/2017/23/11879/005

^{*}Author to whom correspondence should be addressed.

RESEARCH ARTICLE

numbers of symptoms are 46 pieces. The purpose of this research is to create software applications that can help make a decision in determining the classification of lung disease syndrome in TCM. These software applications can be used as a learning medium for students and people who learn about the classification of lung disease syndrome in TCM. This research builds LVQ using a number of data input and output. Data input comes from the preferences of several experts (doctors) toward the symptoms of the patient. While the output data derived from the preferences of the experts toward the syndrome that appear based on these symptoms. Therefore these data are used to train LVQ to get optimum weight so that it can classify lung disease syndrome. Testing is conducted to determine the accuracy and precision in determining lung disease syndrome. Testing is carried out using data of patients' status from the clinic.

2. LEARNING VECTOR QUANTIZATION (LVQ)

This research uses LVQ as a method of classification to determine the type of lung syndrome. The parameters of LVQ are as follow: T is Target; J is the amount of the difference between data and weights; C is the smallest difference in weight class; W is Weight; α is Learning rate; X is input vector.

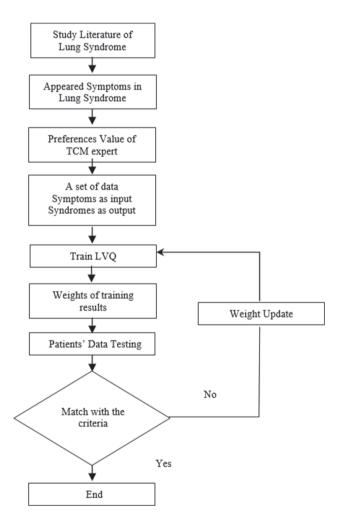


Fig. 1. Diagram block of research for lung syndrome classification.

Table I. Clinical manifestation for lung syndrome type invasion of the lungs by wind cold.

Lung syndrome type	Invasion of the lungs by wind cold	Weight preference (0-1)
Clinical manifestation	Severe chills	()
	Slight fever	()
	Headache	()
	General aching	
	Absence of sweat	()
	Nasal discharge	()
	Cough with clear thin sputum	()
	White tongue coating	()
	Superficial and tense pulse	()

The LVQ algorithm is as follow:¹⁵

1. Initiate the reference vector and the learning rate (α) .

2. As long as the stop condition is false, do steps 3 and 4. Condition stop if the loop reaches the maximum iteration and change the ratio is smaller than the minimum error.

- 3. For each training input vectors, do as follow:
 - a. Find J so that $||x W_j|| ||x W_j||$ valued minimum.

$$C_j = \sqrt{\sum_{i=1}^{n} (x_i - W_{ij})^2}$$

b. Update W_i with:

i. If
$$T = C_j$$
 then $W_j(\text{new}) = W_j(\text{old}) + \alpha[X - W_j(\text{old})]$
ii. If $T \neq C_j$ then $W_j(\text{new}) = W_j(\text{old}) - \alpha[X - W_j(\text{old})]$

ii. If $T \neq C_j$ then $W_j(\text{new}) = W_j(\text{old}) - \alpha [X - W_j(\text{old})].$

4. Decrease learning rate (α).

5. Test stopping condition: This could be the learning rate reaching a sufficiently small value or a fixed number of iterations.

Figure 1 shows a flowchart of research that using LVQ in order to assist in the classification of lung syndrome types. The initial stage is studying the literature related to lung syndrome. The next stage is to determine symptoms that appear in lung syndrome. The next step, it determines the weight of each symptom from lung syndromes. This research cooperates with three experts from the Academy of Acupuncture Surabaya (AAS) to determine weight of each symptom based on their preferences. Each expert gives their preferences toward to symptoms as the input that correlate with the type of lung syndromes as output.

Type of lung syndrome in this research consists of five types such as: invasion of the lungs by wind cold, the accumulation of heat in the lungs, phlegm retention of damp in the lungs, lung qi deficiency and lung yin deficiency. Table I shows an example of an instrument to take the preference of the expert toward the symptoms one of type of lung syndrome. Furthermore, the preference of the expert becomes weights to train LVQ. By setting parameter such as learning rate, number of decrease learning, minimum number of learning rate, maximum number of epoch and training LVQ. Afterwards, we train the LVQ until the optimal weight of LVQ is achieved. Testing is the next stage, at this stage, the optimal weights obtained in the preceding stage are tested. Testing is done by entering symptoms of patient data. If the test results show the same results with the syndrome the experts' preference then the weights can be used. But, if the test results do not match with the experts' preference then it required training weight back again.

Table II.	A set of s	ymptoms in	lung syndrome	s criteria.
-----------	------------	------------	---------------	-------------

Code	Symptom		
C01	Severe chills		
C02	Slight fever		
C03	Headache		
C04	General aching		
C05	Absence of sweat		
C06	Nasal discharge		
C07	Cough with clear thin sputum		
C08	White tongue coating		
C09	Superficial and tense pulse		
C10	High fever		
C11	Slight chills		
C12	Sweating		
C12 C13	Thirst		
C13 C14			
	Dry nose		
C15	Yellow nasal discharge		
C16	Epistaxis		
C17	Sore throat		
C18	Cough with yellow and sticky sputum		
C19	Constipation		
C20	Deep yellow urine		
C21	A red tongue with yellow coating		
C22	Superficial and rapid pulse		
C23	Cough with shortness of breath		
C24	Fullness and stuffiness in the chest		
C25	Orthopnoea in severe cases		
C26	Cough with white and sticky sputum		
C27	Sticky tongue coating		
C28	A rolling pulse		
C29	Feeble cough		
C30	Shortness of breath		
C31	Dislike of speaking		
C32	Weak voice		
C33	Pale complexion		
C34	General lassitude		
C35	Spontaneous sweating		
C36	A pale tongue		
C30 C37	A pale tongue		
C38	Dry cough without sputum		
C38 C39			
	Dry throat		
C40	Hoarse voice		
C41	Emaciation		
C42	Feverish sensation in the palms and soles		
C43	Tidal fever		
C44	Flushed cheeks		
C45	A red tongue with lack of fluid		
C46	A thready, rapid pulse		

Table II shows the symptoms that exist in the five main types of lung syndrome. The numbers of symptoms are as many as 46 kinds of symptoms. The symptoms become input for LVQ were further tested with weights that have been trained to give a decision in the classification of lung syndrome type.

3. RESULTS AND DISCUSSION

LVQ parameters in this study are as follow: Learning rate = 0.1, Number of Decrease learning rate = 0.1, Minimum number of learning rate = 0.001, Maximum number of epoch = 1000. The simulation program uses matlab programming. Figure 2 shows LVQ network for this research. The testing is done by using the optimal weights, where the simulation results show accurate results. It can be shown by entering symptoms according to the expert preferences, the simulation result shows a syndrome classification in accordance with the preferences expert.

Testing result

Data no-	Target	Result
	1 arget	
1		1
2	1	1
3	1	1
4	2	2
5	2	2
6	2	2 3
7	3	3
8	3	3
9	3	3
10	4	4
11	4	4
12	4	4
13	5	5
14	5	5
15	5	5
_		
B =		
5		
Lung Yin	Deficienc	У

Fig. 2. Simulation result for data testing using optimal weights.

Figure 3 is a GUI program that is used to interact between the user and the computer program to determine the classification of lung syndrome. Figure 3 also shows a simulation with input symptoms such as pale complexion, dry cough without sputum, hoarse voice and a red tongue with lack of fluid. Based on selected symptoms, the simulation results show that the selected lung syndrome is lung yin deficiency syndrome. GUI program can also indicate treatment method, principle of therapy and acupuncture point therapy for selected patients for the syndrome.

LVQ GUI-based program can also be used for learning for students in determining lung syndrome. Students can enter symptoms into the GUI program. These symptoms are obtained by students through interview/anamnesis thereafter written on a sheet of patient data. To check whether the diagnosis result of lung syndrome through interviews with patients whether it is true or false the students enter the symptoms into in computer simulation by ticking the selected symptoms. Furthermore, the simulation results will show lung syndrome from patients. The use of computer simulations only acts as a facilitator that assists students in determining the symptoms of the patients is appropriate or not when explored at the interview. If the symptoms that entered to the computer simulation do not match the patient's condition, then automatically the simulation results are also not appropriate.

Table III shows the test results of the patients' data sheet that diagnosed by AAS students. Patients' data sheet used for testing are as many as 12 pieces. The simulation results show significant results, in which the simulation results nearly equal to the outcomes of students' diagnose. There is only one incorrect diagnosis that is at line number 7, where the results of a student diagnosed is Accumulation of Heat in the Lungs while the results of computer simulation classifies as Retention of phlegm Damp

RESEARCH ARTICLE

Adv. Sci. Lett. 23, 11879-11883, 2017

			Selected Syndrome Diagnose
LUN	G SYNDROM	VIE	LUNG YIN DEFICIENCY
severe chills	□ sore throat	0 🔲 weak voice	Treatmant Method
] slight fever] headache	cough with yellow and sticky sputur Constipation	 ¹ pale complexion ⁰ general lassitude ⁰ spontaneous sweating 	POINTS OF LUNG AND KIDNEY MERIDIANS, AND BACK SHU POINTS ARE SELECTED AND TREATED BY ACUPUNCTURE MAINLY WITH REINFORCING METHOD FOR YN DEPICENCY WITH FIRE, A UNFORM RFINFORCING AND REDI ICING METHOD IS APPLIED
general aching absence of sweat	 deep yellow urine a red tongue with yellow coating 	Image: spontaneous sweating Image: spontaneous sweating Image: spontaneous sweating Image: spontaneous sweating Image: spontaneous sweating	Principle of Therapy
nasal discharge cough with clear thin sputum	superficial and rapid pulse cough with shortness of breath	 a thready pulse dry cough without sputum 	NOURISH LUNG AND KIDNEY YIN, CLEAR AND REDUCE HEAT CAUSED BY DEFICIENCY
white tongue coating	0 I fullness and stuffiness in the chest	0 dry throat	
superficial and tense pulse	0 orthopnoea in severe cases	1 V hoarse voice	Acupuncture Point Therapy
high fever	0 cough with white and sticky sputum		LU 9 TAIYUAN; CV 4 GUANYUAN; SHANZHONG; KI 6 ZHAOHAI; BL 43 GAOHUANG: CV 12 ZHONGWAN; BL 13 FEISHU; LU 10 YUJI; GV 12
slight chills	sticky tongue coating	I feverish sensation in the palms and soles	SHENSHU
sweating	0 a rolling pulse	0 tidal fever	000000000000000000000000000000000000000
thirst	feeble cough	0 flushed cheeks	0 0 0 0 1 0 1 0 0 0 0 1 0
dry nose	0 shortness of breath	a red tongue with lack of fluid	
yellow nasal discharge	dislike of speaking	0 a thready, rapid pulse	Close

Fig. 3. Simulation result for data testing in a GUI program.

Table III.	A set of ap	peared sy	mptoms in	lung s	vndromes.

No Symptoms a		Syndrome diagnosis		Accuracy	
	Symptoms appear in data sheet patients	Students	Computer simulation	Yes	No
1	Dry cough without sputum, a red tongue with lack of fluid, pale complexion, hoarse voice	Lung Yin deficiency	Lung Yin deficiency	\checkmark	
2	Feeble cough, general lassitude, pale complexion, white tongue coating, pale tongue, shortness of breath, weak voice	Lung Qi deficiency	Lung Qi deficiency	\checkmark	
3	Feeble cough, sweating, general lassitude, pale tongue	Lung Qi deficiency	Lung Qi deficiency	\checkmark	
4	Feeble cough, pale complexion, shortness of breath, weak voice, pale tongue	Lung Qi deficiency	Lung Qi deficiency	\checkmark	
5	Sweating, superficial pulse and tense pulse, yellow nasal discharge, cough with yellow and sticky sputum, yellow tongue coating, sticky tongue.	Accumulation of heat in the lungs	Accumulation of heat in the lungs	\checkmark	
6	Absence of sweat, white tongue coating, sticky tongue coating,	Invasion of the lungs by wind cold	Invasion of the lungs by wind cold	\checkmark	
7	Cough with shortness of breath, superficial and rapid pulse, thirst, general lassitude, dry throat	Accumulation of heat in the lungs	Retention of phlegm damp in the lungs		\checkmark
8	Cough with yellow and sticky sputum, a red tongue with yellow coating, constipation	Accumulation of heat in the lungs	Accumulation of heat in the lungs	\checkmark	
9	Cough with white and sticky sputum, shortness of breath, sweating, rolling pulse, fullness and stuffiness in the chest, sticky tongue coating, headache	Retention of Phlegm Damp in the Lungs	Retention of Phlegm Damp in the Lungs	\checkmark	
10	Cough with white and sticky sputum, shortness of breath, rolling pulse, sticky tongue coating	Retention of phlegm damp in the lungs	Retention of phlegm damp in the lungs	\checkmark	
11	Sweating, general lassitude, thirst, a thready pulse, a thready, rapid pulse, weak voice	Lung Qi deficiency	Lung Qi deficiency	\checkmark	
12	Shortness of breath, a thready pulse, general lassitude, pale complexion, a pale tongue	Lung Qi deficiency	Lung Qi deficiency	\checkmark	

in the Lungs. It occurs, because students are still in the learning phase in determining the type of lung syndrome.

and the output as many as 5 types of lung syndrome. The simulation results show that LVQ can be used to classify the type of lung syndrome very well.

4. CONCLUSION

Classification of types of lung syndrome can be done by using LVQ method. As it is known, that LVQ method has the advantage in classifying. The classification of lung syndrome-based LVQ is built by using input as many as 46 symptoms of lung syndrome,

References and Notes

- 1. Z. Chen and P. Wang, Evidence-Based Complementary and Alternative Medicine 2012, Article ID 783923 (2012).
- 2. B. Michael, A. Ghosh, and B. Hammer, *Journal of Machine Learning Research* 8, 323 (2007).

11882

- B. K. Karayiannis Nicolaos and P.-I. Pai, IEEE Transactions on Neural Networks 7, 1196 (1996).
- U. M. Fahad, M. K. Sikander Hayat, Information Technology Journal 6, 154 (2007).
- W. Zhaowen, N. M. Nasrabadi, and T. S. Huang, *IEEE Transactions on Geoscience and Remote Sensing* 52, 4808 (2014).
- 6. D. Mustafa, O. Yazicioglu, and A. Kentli, *Tehnicki vjesnik/Technical Gazette* 21, 689 (2014).
- P. Schneider, M. Biehl, F.-M. Schleif, and B. Hammer, Advanced metric adaptation in Generalized LVQ for classification of mass spectrometry data, *Proceedings of 6th International Workshop on Self-Organizing Maps* (2007).
- Z. Chalabi, N. Berrached, N. Kharchouche, and H. Mouhadjer, *Journal of Applied Sciences* 8, 1149 (2008).
- D. Frank, S. Müller-Hagedorn, H. M. Liebich, and G. Gauglitz, Artificial Intelligence in Medicine 28, 265 (2003).
- Gupta Dolly, Gour Sundar Mitra Thakur, and Abhishek, International Journal of Computer Science and Information Technologies 3, 3934 (2012).
- R. R. Janghel, Ritu Tiwari, and Anupam Shukla, International Journal of Computer Applications 975 (2013).
- 12. E. Baltas, et al., An LVQ Classifier of EEG Coherence Patterns for Pain Detection (2002).
- A. Qureshi Hammad, Nasir M. Rajpoot, Khalid Masood, and V. Hans, Classification of Meningiomas Using Discriminant Wavelet Packets and Learning Vector Quantization (2006), http://www.dcs.warwick.ac.uk/~hammad/Papers/ miua_06.pdf.
- 14. C. Xinnong, Z. Bing, and W. Hongcai, Acupuncture Therapeutics, People's Military Medical Press, Singing Dragon, USA (2011).
- T. Kohonen, The self-organizing map, *Proceedings of the IEEE* (1990), Vol. 78, pp. 1464–1480.

Received: 30 August 2016. Accepted: 30 May 2017.